US 20180314941A1

a2y Patent Application Publication (o) Pub. No.: US 2018/0314941 A1l

a9y United States

LIE et al.

43) Pub. Date: Nov. 1, 2018

(54) ACCELERATED DEEP LEARNING

(71) Applicant: Cerebras Systems Inc., Los Altos, CA
(US)
(72)

Inventors: Sean LIE, Los Gatos, CA (US);

Michael MORRISON, Sunnyvale, CA
(US); Michael Edwin JAMES, San
Carlos, CA (US); Gary R.
LAUTERBACH, Los Altos, CA (US);
Srikanth AREKAPUDI, Santa Clara,
CA (US)

@
(22)

Appl. No.: 15/903,340

Filed: Feb. 23, 2018

Related U.S. Application Data

(60) Provisional application No. 62/462,640, filed on Feb.

23, 2017, provisional application No. 62/486,372,
filed on Apr. 17, 2017, provisional application No.
62/517,949, filed on Jun. 11, 2017, provisional appli-
cation No. 62/520,433, filed on Jun. 15, 2017, pro-
visional application No. 62/522,065, filed on Jun. 19,
2017, provisional application No. 62/522,081, filed
on Jun. 19, 2017, provisional application No. 62/542,
645, filed on Aug. 8, 2017, provisional application
No. 62/542,657, filed on Aug. 8, 2017, provisional
application No. 62/580,207, filed on Nov. 1, 2017,

Combined Server(s}

110
Placement Server(s}
150
= &
151 152
[
[T—LAN, 111

Connection Server(s)

CPUs NICs
161 164 162
A

provisional application No. 62/628,773, filed on Feb.

9, 2018, provisional application No. 62/628,784, filed
on Feb. 9, 2018.

Publication Classification

(51) Int. CL
GOG6N 3/08 (2006.01)
GOGF 9/455 (2006.01)
(52) US.CL
CPC ... GOG6N 3/08 (2013.01); GOGF 9/45533
(2013.01)
(57) ABSTRACT

Techniques in advanced deep learning provide improve-
ments in one or more of accuracy, performance, and energy
efficiency, such as accuracy of learning, accuracy of predic-
tion, speed of learning, performance of learning, and energy
efficiency of learning. An array of processing elements
performs flow-based computations on wavelets of data.
Each processing element has a respective compute element
and a respective routing element. Each compute element has
processing resources and memory resources. Each router
enables communication via wavelets with at least nearest
neighbors in a 2D mesh. Stochastic gradient descent, mini-
batch gradient descent, and continuous propagation gradient
descent are techniques usable to train weights of a neural
network modeled by the processing elements. Reverse

checkpoint is usable to reduce memory usage during the
training.

Internet
180

\
\
[}
\
3
!
1
[}
11

Placements, 113

[100Gb, 112 L

! Deep Learning Accelerator | 1

' 120 Y [

: FPGAs] PEs '

) 121 Coupling, 122 '

| < 123 > H

! |

! |

! |

I ., |

b A

Weights, .~
11‘_‘ _____ -~ .. Weights, 115
Autonomous Vehicle/ Cell Phone ™,
130 { 140 N

CPUs CRM IEs CPUs CRM IEs
131 132 133 141 142 143

| Camera
135

| Camera
145

Patent Application Publication

Combined Server(s)
110

Nov.1,2018 Sheet 1 of 33

US 2018/0314941 A1l

Internet
180

1
: |
! I
|
|
| Placement Server(s) |
! 150 |
I N R
x CPUs CRM e
| 151 152 LN
l N
: Y
| T-LAN, 111 :
‘ 1
l t
: Connection Server(s) | “‘ Placements, 113
| 160 ' \
l 1
| | [CPUs] [Nics| [CRM n ':
! 161 164 162 ! :
l A l :
x } :
____________________ :
 ~~100Gb, 112 :
—————————————————————— '— — — — — — —
: Deep Learning Accelerator | |
, 120 y !
| FPGAs _ PEs :
| 121 Couping: 122 |
: -« |
| |
! !
' x |
b e o ol
Weights, P d T
11? ,,,,, - .. Weights, 115
Autonomous Vehicle,” Cell Phone ™\,
130 6 140 AN
CPUs CRM IEs CPUs CRM S
131 132 133 141 142 143
Camera Camera
135 145

Fig. 1

Patent Application Publication

Nov.1,2018 Sheet 2 of 33

Placement Server(s) SW
210

Neuron to PE Mapping SW
212

Autonomous Vehicle SW
230

Video Camera SW
232

Inference Engine(s) SW
233

Connection Server(s) SW
220

100Gb NIC Driver
224

Navigating SW
234

Training Info Provider SW
225

Weight Receiver SW
226

Cell Phone SW
240

Still Camera SW
242

Misc SW on FPGAs
290

Inference Engine(s) SW
243

Posting SW
244

Task SW on PEs
260

Fig. 2

US 2018/0314941 A1l

Patent Application Publication Nov. 1,2018 Sheet 3 of 33 US 2018/0314941 A1

x— 300

Place Neurons
310

Initialize FPGAs
320

%

Initialize PEs
330

Training Data => PEs
340

!

Forward Pass,
Delta Pass,
Chain Pass,

Weight Updates
350

No

Training Complete?

Weights Out
370

l

Use Weights for
Inference
380

Fig. 3

Patent Application Publication Nov. 1,2018 Sheet 4 of 33 US 2018/0314941 A1

Deep
Learning
Accelerator,
400
eeemmmmmmeooOYWaNd, 401 >
. Delta, 402 ______ .
1o 10
FPGAS " FPGAS
420 | —_1AU_|_ bo—d-y 0 —do——p—o | 420
|][/||;' l' 'I HEE ‘{ 1r |
| TPE] [PE[PE]L [PE]L ¢ _I[PE] [PEL
499 4901 499[4991 Tg@ 499 :
] [] [[
:EPE_PE;{:_PE_PE_:_:_{_PE_PE !
| (499 [499y[499] (4], 1499 [499] |
| @ ® ,: Y ° : e o
I @ e ; & e eéel o o
Y e |, o o , | e o |
| I P9 | |
| AscIoasic 121 asic |
40y 40 Doy 40
l I | e |
| @ e |, o o, ! I e o |
I e i, @ e 000! o e |
| ®30 e lle e ! e e |
|
aasast | oy | | oy 0 | |
|([PEL[PE]NPEL[PE] | _[PE] [PEL!
| 1497 %T% 4911 1 [499] (499 ;
| _hae | oy 1 A T R N
| [PE] _[PE|,[PE[PE], { _[PE][PE] 4
I |499| |490 1400 fa09[” | T|aga[[4g9]
L_}___IZ_'Lq___I 1y L%___F__!
Wafer, 412

Fig. 4

Patent Application Publication

Nov.1,2018 Sheet 5 of 33

US 2018/0314941 A1l

North, 513

Skip West, 512y,

Router

West, 511 510

Off Ramp, 521

South, 516

PE 500

¥ Skip East, 514

East, 515

On Ramp, 522

Compute Element
520

Fig. 5

Patent Application Publication Nov. 1,2018 Sheet 6 of 33 US 2018/0314941 A1
Router 600
________ 1
// Data In \\ : Dataﬁggeues : // Data Out \\
! 610 \ | | / 620 \
[l — | | !
| skipX+, 611~ Writa T , |t skipX+, 621 |
b skipX-, 612 4 pog [; —L» skipX-, 622 |
: X+, 613 -1 g5y || l —> X+, 623 :
| X-, 614 = || l X-, 624 |
| Y+, 615 : : 1> Y+, 625 |
! Y-, 616 ——» | I - Y-, 626 |
l\ On Ramp, 617 —Il—> ; —l\-b Off Ramp, 627/1
\ / L \ /
~ - . rd ~ - - rd
- Valids -
: Control Info | Router
b |

: Sources 1§ 1 880 1 Sched

| 653 il [Dest] ! 654

! i) Lest [

I |Src I

i Il Sent :

e e | Lses2 [e
;7 StallOut M i 7" Sources "\
/ 630 v | Gen | 640 \
] _ 'l Stall | . !
I skipX+, 631+ g5g Stall [skipX+, 641 !
| skipX-, 632e{ 657 |*T—skipX- 642 |
: X+, 633 -] Tl X+, 643 |
, X-, 634 < <t X-, 644 |
| Y+, 635 1 @l— Y+, 645 |
[Y-, 636+ - Y-, 646 !

|
\On Ramp, 6374—}— - Off Ramp, 647,
\ / \ /
____// _____//

Fig. 6

Patent Application Publication Nov. 1,2018 Sheet 7 of 33 US 2018/0314941 A1

1
Stall Info 72

Router Q Full?

21 Yes

|| DeAssert Stall Assert Stall | |
722 £23
L !
r=—m====mm e “ I _________________ “

Wavelet Ingress 710

Wait for Wavelet
711

Router Q Empty?

Receive Wavelet
712

!

Wavelet =>
Router Q

Stalled?
733
No

Send Wavelet
734

Patent Application Publication Nov. 1,2018 Sheet 8 of 33 US 2018/0314941 A1

Off Ramp,
820
]
v CE 800
Qdistr Hash
824 <+ 822

i i
' |
| Q Q i
| |goz0 | ®®® [sozN| | Qs 897
1 | Active Active : Active
| Bit o090 Bit | .
Bits 898
: 898.0 898.N | | _
|
I Block 'Y X Block | | Block Bits
| Bit Bit
| 899
11 899.0 899.N i
o _¢ _______ !
Picker .
830
A ‘f Base
Terminate, 890
812 i PC
834
A4 Dec
| 840 i

\ D-Seq DSRs 838
A ™ 844 [*] 846

842

D-Store
848 ¢

A J 3 A 4 l

Data Path Memory
852 nilg 854
]
On Ramp,

Fig. 8

Patent Application Publication Nov. 1,2018 Sheet 9 of 33 US 2018/0314941 A1

Start
901

Select Ready Wavelet
for Task Initiation
9205

Add Lower Index Bits to
Base Reqgister to Form
Instruction Address
930

Control/Data?

Add (Color * 4) to Base
Register to Form
Instruction Address

920

Fetch Instructions From
Memory at Instruction

> Address B
gig
Execute Fetched
Not , Instruction(s)
Terminate, 960
961

Terminate, 962

Fig. 9

Patent Application Publication

Check Control Inputs
1010

Branch Stall?
1012

Do Nothing
1014

Terminate => Scheduler
1016

Fig. 10

Nov. 1,2018 Sheet 10 of 33 US 2018/0314941 A1
e 1000
Branch Resolution?
Yes
D- Seq Stall?
1022
\ 4
Process Next
Task/Branch
PC
I-Seq Mode? Task Addr =>
1024 PC
104
Yes 1040
Fetch Instr
——————]
1026
Terminate Instr?
1028
Stall
Branch Instr? Sequencer
1030 1042
No
Update PC
> Instr => Decode —————————————
1032

Patent Application Publication Nov. 1,2018 Sheet 11 of 33 US 2018/0314941 A1l

Activatio_ns Propagate Reschedule, ot
Frir;ygrnor Partial Sums, a3 i Aﬁéﬁ?ﬂ‘;@‘iﬁ °
, 1114 : ’
1101 > \ & 112
Receive and .
i Accumulate | Ca|oul§;emParnal .. 5 Transmit Activations _L
Activations 1120
1102 113
Receive Activation
Cl;)?%out Closeout to
1111 Next Layer,
Flow Control 1122
Closeout From Start Partial Dependency, ——m
Prior Layer, Sums, 1131

1110 1112

Output
Wavelet to
Different PE,
1132

Wake Wavelet — - - -
to Self, 1133

Fig. 11

Patent Application Publication Nov. 1,2018 Sheet 12 of 33 US 2018/0314941 A1l

Start

Receive Activation
1202

'

Accumulate
Activations
1203

v

Receive Activation
Closeout
1204

!

Start Partial Sum . .
Ring Recelve1 S(e)l(ratnal Sum

12056
!

Compute Partial
Sum
1207

!

Transmit Partial
Sum
1208

l

Transmit Activations
1209

'

Transmit Closeout

Patent Application Publication

Sparse |
Wavelet, -
1301 |

A~

Dense [
Wavelet, <
1331 |

kS

Nov. 1,2018 Sheet 13 of 33

US 2018/0314941 A1l

Index, 1321
Control Bit |Lower Index |Upper Index |Sparse Data|Color 1324
1320 Bits 1321.1 |Bits 1321.2 (1322
Sparse Wavelet Payload, 1302
Fig. 13A
Control Bit |Dense Data Dense Data Color 1344
1340 1343.1 1343.2

Dense Wavelet Payload, 1332

Fig. 13B

Patent Application Publication Nov. 1,2018 Sheet 14 of 33 US 2018/0314941 A1l

Start -
1401 CE of Transmitting
PE, 1420

r Al

h 4

Initialize
PEs —» Set Source 1403
1402

Set Destination
(Fabric) DSR
1404

Y

Fetch/Decode
Instruction with
Destination DSR
1404.5

v

Read DSR(s)
1404.6

v

Read (Next) Source
Data Element(s)

—» from Queue/ Router of Router of

Memory Transmitting PE, Receiving PE,
1405 1430 1440

+ L4 ™ r N

Provide Data
Element(s) as Wavelet
Yes to Router :
1406 |

i

\ 4
Transmit
Wavelet(s) to
Fabric
1408

More Data
Elements?
1407

\

Receive Wavelel(s)
from Fabric
1409

Start
1501

Patent Application Publication

Router of Receiving
PE, 1520

£

Al

Initialize PEs
1502

Receive Wavelet at
Router 1503

No

To Other
PE(s)? 1504

Transmit Wavelet to
Output(s)
1505

For
Local CE?
1506

Nov. 1,2018 Sheet 15 of 33

x— 1500

CE of Receiving PE,
1530

US 2018/0314941 A1l

r

Al

Yes

Write Wavelet to
Picker Queue
1507

Fig. 15A

Start
1551

Picker Selects
Wavelet for
Processing

1552

v

Fetch, Execute
Instructions
1553

Fig. 15B

x— 1550

Patent Application Publication Nov. 1,2018 Sheet 16 of 33 US 2018/0314941 A1l

Start
1601

e 1600
Fetch, Decode
Instruction
1602
. Block Color(s)
2
Block Instruction? 1604

Unblock Color(s)
1611

Unblock Instruction?

Execute Instruction
1620

End
1630

Fig. 16

Patent Application Publication Nov. 1,2018 Sheet 17 of 33 US 2018/0314941 A1

1700

M..M_/_._._M“\

-
/
L
"
]
]
A Y

input Layer,
1710

. ~ 14 ” : \\
1791\: ‘s~*’:‘~_:\<~ ‘ssl \\\
Internal
Layers,
1720
Output ‘
Layer, <
1740

P

Fig. 17

Patent Application Publication

Nov. 1,2018 Sheet 18 of 33

US 2018/0314941 A1l

PEO, PE1, PE2, PE3, PE4, PES,
1820 1821 1822 1823 1824 1825
N21 N22 N23 N24
1721 1722 1723 1724
N31 N32
1731 1732
Fig. 18A
PEO, PE1, PE2, PES, PE4, PES,
1820 1821 1822 1823 1824 1825
1/2 N21 1/2 N23 1/2 N21 1/2 N23
1721.1 17231 1721.2 1723.2
1/2 N22 1/2 N24 1/2 N22 1/2 N24
1722.1 1724.1 1722.2 1724.2
1/4 N31 1/4 N31 1/4 N31 1/4 N31
1731.1 1731.2 1731.3 1731.4
1/4 N32 1/4 N32 1/4 N32 1/4 N32
1732.1 1732.2 1732.3 1732.4

Fig. 18B

Patent Application Publication

Nov. 1,2018 Sheet 19 of 33

in0, 1910 —»
int, 19911 —»
in2, 1912 —»

in3, 1913 —»|
in4, 1914 —»
in5, 1915 —»

N21
1721
1/2 1/2
Local Local
Compute Storage
1930.1 1940.1
1/2 1/2
Local Local
Compute Storage
1930.2 1940.2

1/2 N21 |

L out0, 1920 1721.1

— outt, 1921
— out2, 1922

Additional
Storage
1960.1

dditional
ommunication,
970

o O>

1/2 N21

— out3, 1923 1721.2

——p out4, 1924
—» outs, 1925

Additional
Compute
1950.2

Additional
Storage
1960.2

US 2018/0314941 A1l

Patent Application Publication Nov. 1,2018 Sheet 20 of 33 US 2018/0314941 A1l

:Wafer Portion
12000 2050 2051

u
|
| n
| PEO PET {
: 1820 1821 I
| |
: 1/2N21 | 1/2 N23 |1793.1 a
| % 17211 17231 [*, !
l4791.1| / 17921 !
'_g _____ _’ \\(: \\‘ |
' \\\ ‘\ .
| 2957 ' 2352:
\\ 1
| 1/2 N22 2040 1/2 N24 ; !
l 1722.1 1724.1 ! |
\ !
: \\ ’I '
\ ' n
l \ / |
| M /l
. 174 N31 2060 AN3T | !
| 1731.1 J s I 1731.2 ,
| 1/4N32 |_-—~ ~-a| /4 N32 |
! 1732.1 1732.2 |
| |
n
| }2044 }2041 :
|
l
| 2056(PE2 2043 |pE3 2053
n

e p{ 1822 1823 PREN
|
|
|
!
|

Patent Application Publication Nov. 1,2018 Sheet 21 of 33 US 2018/0314941 A1l

CH |8Q |SC |SA |88 |Type|US |CX |[Term|AC |SW [UE JUTID |Length
2114121132112 1211112110 {2109 {2108{2107]2106 {2105 |2104|2103 {2102 |2101

Fabric Input Data Structure Descriptor, 2100

Fig. 21A

AC lindex |WLI |SA |SS |Type|lndex |C |Color|SW {UE {UTID |Length
2125]High 2132 12131|2130 |2129 |Low |2127|2126 |2124]2123 |2122 2121

2128.2 21281

Fabric Output Data Structure Descriptor, 2120

Fig. 21B

Stride |WLI |[SA [SS |Type |Base Length
2153 2152 215112150 |2149 |Address 2141
2142

A J

1D Memory Vector Data Structure Descriptor, 2140

Fig. 21C

Length, 2161 §
%
Length Upper |[WLI [SA |SS |Type {Base Length Lower
Bits 2161.2 |[2172 (2171|2170 12169 |Address Bits 2161.1
2162

\ J

4D Memory Vector Data Structure Descriptor, 2160

Fig. 21D

SW |WLI |SA |SS |Type |FW |Base Length
2184 12192 12191 12190 |2189 |2188 |Address 2181
2182

| J

Circular Memory Buffer Data Structure Descriptor, 2180

Fig. 21E

Patent Application Publication Nov. 1,2018 Sheet 22 of 33 US 2018/0314941 A1l
Pop Push FIFO |End Start Type 2211
Color Color 2214 |Address Address
2216 2215 2213 2212

\

J

Circular Memory Buffer Extended Data Structure Descriptor, 2210

Fig. 22A

Stride
2245

Stride
Select 4
2244.4

Stride
Select 3
2244.3

Stride
Select 2
2244.2

Stride |DF |Dimensions |Type
Select 12243 |2242 2241
2244 1

4D Memory Vector Extended [Y)ata Structure Descriptor, 2240

Fig. 22B

Patent Application Publication Nov. 1,2018 Sheet 23 of 33 US 2018/0314941 A1l

Start y— 2300
2301

setosrie 222 |- (RN |

Y

Fetch/Decode
Instruction with
DSR(s)
2303

'

Read DSR(s)
2304

v

Read (Next) Source
Data Element(s)

—> from Queue/

Memory

2310

v

Perform (Next)
Operation(s) on
Data Element(s)

2311

...........................

l (optional) Read ,
----- > XDSR(s) ;
; 2306 ;

...........................

Yes *

Write (Next)
Destination Data
Element(s) to
Queue/Memory
2312

ore Data
Element(s)?
2313

Fig. 23

Patent Application Publication

——— — — —

| Fabric
'vector
2410

ype =
Fabric?
2411

Yes

——— - — — — — G —— — — — — — — —— ——— f—— ———— " — — — — — —] — — —— — —

Nov. 1,2018 Sheet 24 of 33

US 2018/0314941 A1
2400

""""""""""""""""""""" Memory |
Vector!

2420!

Yes
Read XDSR
Specified via DSD
2422

No

ype =
4D Vector?
2423

Yes

No

{optional) Read
Stride Register(s)

2424
' ! !
Access
Accegs Accejss Ciroular
1D via 4D via :
Buffer via
DSD XDSD XDSD
2427 2428 2429

Fig. 24

Patent Application Publication Nov. 1,2018 Sheet 25 of 33 US 2018/0314941 A1l
Operand 0
g Encoding, ——
| 2513 |
s i
Terminate {Operand 0 |Operand 1|Operand 1 |Operand 0 {Opcode Instruction
2515 2513.2 2514.2 Type Type 2512 Type 2511
2514.1 2513.1
Operand 1vEncoding,
2514
Multiple Operandv Instruction 2510
Fig. 25A
Operand 1 Encoding,
2523
Terminate |Immediate |Operand 1 |Operand 1 |Opcode Instruction
2525 High 2524 |2523.2 Type 2522 Type 2521
29231

One Source, No Destination Operand Instruction, 2520

Fig. 25B

Immediate, :
2534 |
/—J% K—j%
Immediate |Operand 0 |Immediate |Opcode Instruction
High 2533.2 Low 2532 Type 2531
2534.2 2534 1

\ J

Immediate Instruction, 2530

Fig. 25C

Patent Application Publication Nov. 1,2018 Sheet 26 of 33 US 2018/0314941 A1l

R <. 4. S >
! 0
s \hﬂ
§ First h%)
' Forward \
i Pass, 2611 .
! N D
! ho
5;—! L 0 i
3 fo | ho
! D
s o %
E 4 First
: / . Backward
i . ? Pass, 2621
| - %
: 4
% 6
H 6.
Second h’i
Forward < \
Pass, 2612 .
' D
h 1
L 0 1
hi |Ri
D
o1
4 Second
/ . Backward
. ? Pass, 2622
. 1
4
/ 0
01

Patent Application Publication

ST

o e e O

Mini-Batch
Size (N), <
2631

Overhead,
2632

Nov. 1,2018 Sheet 27 of 33 US 2018/0314941 A1

Update
Interval (U),
2633

Patent Application Publication Nov. 1,2018 Sheet 28 of 33 US 2018/0314941 A1l

Forward)
Pass, 2651

swil

Backward
Pass, 2661

o e e

Patent Application Publication Nov. 1,2018 Sheet 29 of 33 US 2018/0314941 A1l

--- >
i
]
i
! 0
! zo _ ho(©o)
]
i N\
E w ’..’. i
i Forward | 1 ' 0
E Pass, 2671 " o
i 4.
i D
. : h
B hO(O; 0
i3 Lz ol D)-.hhg \
| Z1 ho/(Backward
: - 70 i Pass, 2681
! /
]
i
v

Patent Application Publication Nov. 1,2018 Sheet 30 of 33 US 2018/0314941 A1l

Previous Layer, 2701 Subsequent Layer, 2702
Aiy, Compute 2710 Az, Compute 2720 Az,
2781 2782 2783
> F2711 e »@— F 2721 e >
! A A
v v
A 2716 W 2717 A 2726 W 2727
Storage 2715 Storage 2725

Fig. 27A

Previous Layer, 2701 Subsequent Layer, 2702
M, Compute 2710 Asy, Compute 2720 Aay,
2791 2792 2793
- e B2712 - e B 2722 -
A A A A
l
A 2716 W 2717 A 2726 W 2727
A h 4
W 2718 W 2728
Storage 2715 Storage 2725

Fig. 27B

Patent Application Publication Nov. 1,2018 Sheet 31 of 33 US 2018/0314941 A1l

Previous Layer, 2703 Subsequent Layer, 2704
At Compute 2730 Act, Compute 2740 Asy,
2781 2782 2783
> F 2711 e »@—» 2721 e »>
I A A
L]
A 2716 W 2717 W 2727
Storage 2735 Storage 2745
Fig. 27C
Previous Layer, 2703 Subsequent Layer, 2704
Compute 2730 Ay, Compute 2740
2784
» F 2711 e -
A
Y
A 2716 W 2717 A 2729 W 2727
Storage 2735 Storage 2745
Fig. 27D
Previous Layer, 2703 Subsequent Layer, 2704
Ny, Compute 2730 Ny, Compute 2740 ANy,
2794 2795 2796
- e B 2712 - e B 2722 - e
A A) A
I l
A 2716 W 2717 A 2729 W 2727
\ J A J
W 2718 W 2728
Storage 2735 Storage 2745

Fig. 27E

Patent Application Publication Nov. 1,2018 Sheet 32 of 33 US 2018/0314941 A1l

Basic Operation
matrixm X vectorv = vectorv’

VoV Ve
vy X ¥
0 'V’O
1 vy
mTC =
R v'r
01 C

Forward pass
Inputa,, for eachr:

fpsum, = fpsum, +wy a,

Delta pass
Input 6., for each c:

dpsum, = Spsum; + wy .6,

Chain pass
Input §,., for each c:

Grc = 9rc + 6,a.

Memory

Data cache

Agply ar

Activationsper
wavefront

Fig. 28B

Patent Application Publication

f_rxact:

Activations, | acc |_Flow,

2911 " 2913
2901

Start

f_rxact: | Psums,

Closeouts, .| close 2916

2912

2902

Nov. 1,2018 Sheet 33 of 33 US 2018/0314941 A1l
Prop Reschedule,
Psums, ?15
2931 ¢ :
. | _Wake, Activations, _
> 5314 2001 >
f psum: .
prop f txact:ix
2903 2904
Closeouts,
2922 o
Prop
Psums,
2930

US 2018/0314941 Al

ACCELERATED DEEP LEARNING

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] To the extent permitted by the type of the instant
application, this application incorporates by reference for all
purposes the following applications, all commonly owned
with the instant application at the time the invention was
made:

[0002] U.S. Provisional Application Ser. No. 62/628,
784 (Docket No. CS-17-05), filed 2018 Feb. 9, first
named inventor Sean LIE, and entitled FABRIC VEC-
TORS FOR DEEP LEARNING ACCELERATION;

[0003] U.S. Provisional Application Ser. No. 62/628,
773 (Docket No. CS-17-12), filed 2018 Feb. 9, first
named inventor Sean LIE, and entitled DATA STRUC-
TURE DESCRIPTORS FOR DEEP LEARNING
ACCELERATION;

[0004] U.S. Provisional Application Ser. No. 62/580,
207 (Docket No. CS-17-01), filed 2017 Now. 1, first
named inventor Sean LIE, and entitted NEURON
SMEARING FOR ACCELERATED DEEP LEARN-
ING;

[0005] U.S. Provisional Application Ser. No. 62/542,
645 (Docket No. CS-17-02), filed 2017 Aug. 8, first
named inventor Sean LIE, and entitled DATAFLOW
TRIGGERED TASKS FOR ACCELERATED DEEP
LEARNING;

[0006] U.S. Provisional Application Ser. No. 62/542,
657 (Docket No. CS-17-06), filed 2017 Aug. 8, first
named inventor Sean LIE, and entitled TASK SYN-
CHRONIZATION FOR ACCELERATED DEEP
LEARNING;

[0007] U.S. Provisional Application Ser. No. 62/522,
065 (Docket No. CS-17-03), filed 2017 Jun. 19, first
named inventor Sean LIE, and entitled WAVELET
REPRESENTATION FOR ACCELERATED DEEP
LEARNING;

[0008] U.S. Provisional Application Ser. No. 62/522,
081 (Docket No. CS-17-04), filed 2017 Jun. 19, first
named inventor Sean LIE, and entitted CONTROL
WAVELET FOR ACCELERATED DEEP LEARN-
ING;

[0009] U.S. Provisional Application Ser. No. 62/520,
433 (Docket No. CS-17-13B), filed 2017 Jun. 15, first
named inventor Michael Edwin JAMES, and entitled
INCREASED CONCURRENCY AND EFFICIENCY
OF DEEP NETWORK TRAINING VIA CONTINU-
OUS PROPAGATION;

[0010] U.S. Provisional Application Ser. No. 62/517,
949 (Docket No. CS-17-14B), filed 2017 Jun. 11, first
named inventor Sean LIE, and entitled ACCELER-
ATED DEEP LEARNING;

[0011] U.S. Provisional Application Ser. No. 62/486,
372 (Docket No. CS-17-14), filed 2017 Apr. 17, first
named inventor Sean LIE, and entitled ACCELER-
ATED DEEP LEARNING; and

[0012] U.S. Provisional Application Ser. No. 62/462,
640 (Docket No. CS-17-13), filed 2017 Feb. 23, first
named inventor Michael Edwin JAMES, and entitled
INCREASED CONCURRENCY AND EFFICIENCY
OF DEEP NETWORK TRAINING VIA CONTINU-
OUS PROPAGATION.

Nov. 1, 2018

BACKGROUND

Field

[0013] Advancements in accelerated deep learning are
needed to provide improvements in one or more of accuracy,
performance, and energy efficiency.

Related Art

[0014] Unless expressly identified as being publicly or
well known, mention herein of techniques and concepts,
including for context, definitions, or comparison purposes,
should not be construed as an admission that such tech-
niques and concepts are previously publicly known or
otherwise part of the prior art. All references cited herein (if
any), including patents, patent applications, and publica-
tions, are hereby incorporated by reference in their entire-
ties, whether specifically incorporated or not, for all pur-
poses.

SYNOPSIS

[0015] The invention may be implemented in numerous
ways, e.g., as a process, an article of manufacture, an
apparatus, a system, a composition of matter, and a computer
readable medium such as a computer readable storage
medium (e.g., media in an optical and/or magnetic mass
storage device such as a disk, an integrated circuit having
non-volatile storage such as flash storage), or a computer
network wherein program instructions are sent over optical
or electronic communication links. The Detailed Description
provides an exposition of one or more embodiments of the
invention that enable improvements in cost, profitability,
performance, efficiency, and utility of use in the field iden-
tified above. The Detailed Description includes an Introduc-
tion to facilitate understanding of the remainder of the
Detailed Description. The Introduction includes Example
Embodiments of one or more of systems, methods, articles
of manufacture, and computer readable media in accordance
with concepts described herein. As is discussed in more
detail in the Conclusions, the invention encompasses all
possible modifications and variations within the scope of the
issued claims.

BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 illustrates selected details of an embodiment
of a system for neural network training and inference, using
a deep learning accelerator.

[0017] FIG. 2 illustrates selected details of an embodiment
of software elements associated with neural network training
and inference, using a deep learning accelerator.

[0018] FIG. 3 illustrates selected details of an embodiment
of processing associated with training a neural network and
performing inference using the trained neural network, using
a deep learning accelerator.

[0019] FIG. 4 illustrates selected details of an embodiment
of a deep learning accelerator.

[0020] FIG. 5illustrates selected details of an embodiment
of a processing element of a deep learning accelerator.
[0021] FIG. 6 illustrates selected details of an embodiment
of a router of a processing element.

[0022] FIG. 7 illustrates selected details of an embodiment
of processing associated with a router of a processing
element.

US 2018/0314941 Al

[0023] FIG. 8 illustrates selected details of an embodiment
of a compute element of a processing eclement.

[0024] FIG. 9 illustrates selected details of an embodiment
of processing a wavelet for task initiation.

[0025] FIG. 10 illustrates selected details of an embodi-
ment of instruction processing associated with a compute
element of a processing element.

[0026] FIG. 11 illustrates selected details of an embodi-
ment of flow associated with dependency management via
closeouts.

[0027] FIG. 12 illustrates selected details of an embodi-
ment of flow associated with activation accumulation and
closeout, followed by partial sum computation and closeout.
[0028] FIG. 13A illustrates selected details of an embodi-
ment of a sparse wavelet.

[0029] FIG. 13B illustrates selected details of an embodi-
ment of a dense wavelet.

[0030] FIG. 14 illustrates selected details of an embodi-
ment of creating and transmitting a wavelet.

[0031] FIG. 15A illustrates selected details of an embodi-
ment of receiving a wavelet.

[0032] FIG. 15B illustrates selected details of an embodi-
ment of consuming a wavelet.

[0033] FIG. 16 illustrates selected details of an embodi-
ment of block instruction and unblock instruction execution.
[0034] FIG. 17 illustrates selected details of an embodi-
ment of a neural network.

[0035] FIG. 18A illustrates selected details of a first
embodiment of an allocation of processing elements to
neurons.

[0036] FIG. 18B illustrates selected details of a second
embodiment of an allocation of processing elements to
neurons.

[0037] FIG. 19 illustrates selected details of an embodi-
ment of smearing a neuron across a plurality of processing
elements.

[0038] FIG. 20 illustrates selected details of an embodi-
ment of communication between portions of split neurons.
[0039] FIG. 21A illustrates selected details of an embodi-
ment of a Fabric Input Data Structure Descriptor.

[0040] FIG. 21B illustrates selected details of an embodi-
ment of a Fabric Output Data Structure Descriptor.

[0041] FIG. 21C illustrates selected details of an embodi-
ment of a 1D Memory Vector Data Structure Descriptor.
[0042] FIG. 21D illustrates selected details of an embodi-
ment of a 4D Memory Vector Data Structure Descriptor.
[0043] FIG. 21E illustrates selected details of an embodi-
ment of a Circular Memory Buffer Data Structure Descrip-
tor.

[0044] FIG. 22A illustrates selected details of an embodi-
ment of a Circular Memory Buffer Extended Data Structure
Descriptor.

[0045] FIG. 22B illustrates selected details of an embodi-
ment of a 4D Memory Vector Extended Data Structure
Descriptor.

[0046] FIG. 23 illustrates selected details of accessing
operands in accordance with data structure descriptors.
[0047] FIG. 24 illustrates selected details of an embodi-
ment of decoding a data structure descriptor.

[0048] FIG. 25A illustrates selected details of an embodi-
ment of a multiple operand instruction.

[0049] FIG. 25B illustrates selected details of an embodi-
ment of a one source, no destination operand instruction.

Nov. 1, 2018

[0050] FIG. 25C illustrates selected details of an embodi-
ment of an immediate instruction.

[0051] FIG. 26A illustrates an embodiment of a pipeline
flow for Stochastic Gradient Descent (SGD).

[0052] FIG. 26B illustrates an embodiment of a pipeline
flow for Mini-Batch Gradient Descent (MBGD).

[0053] FIG. 26C illustrates an embodiment of a pipeline
flow for Continuous Propagation Gradient Descent (CPGD).
[0054] FIG. 26D illustrates an embodiment of a pipeline
flow for Continuous Propagation Gradient Descent (CPGD)
with Reverse CheckPoint (RCP).

[0055] FIGS. 27A-27E illustrate various aspects of for-
ward pass and backward pass embodiments in accordance
with SGD, MBGD, CPGD, and RCP processing.

[0056] FIG. 28A illustrates a generic operation of a matrix
(m) multiplied by a vector (v).

[0057] FIG. 28B illustrates various representations of
memory structures used in a forward pass, a delta pass, and
a chain pass.

[0058] FIG. 29 illustrates an embodiment of tasks as used
in a forward pass state machine.

LIST OF REFERENCE SYMBOLS IN

DRAWINGS
[0059]
Ref.
Symbol Element Name
100 Neural Network System
110 Combined Server(s)
111 LAN
112 100 Gb
113 Placements
114 Weights
115 Weights
120 Deep Learning Accelerator
121 FPGAs
122 PEs
123 Coupling
130 Autonomous Vehicle
131 CPUs
132 CRM
133 IEs
135 Camera
140 Cell Phone
141 CPUs
142 CRM
143 IEs
145 Camera
150 Placement Server(s)
151 CPUs
152 CRM
160 Connection Server(s)
161 CPUs
162 CRM
164 NICs
180 Internet
200 Neural Network Software
210 Placement Server(s) SW
212 Neuron to PE Mapping SW
220 Connection Server(s) SW
224 100 Gb NIC Driver
225 Training Info Provider SW
226 Weight Receiver SW
230 Autonomous Vehicle SW
232 Video Camera SW
233 Inference Engine(s) SW
234 Navigating SW
240 Cell Phone SW
242 Still Camera SW

US 2018/0314941 Al Nov. 1, 2018

3
-continued -continued
Ref. Ref.
Symbol Element Name Symbol Element Name
243 Inference Engine(s) SW 651 Write Dec
244 Posting SW 652 Out
250 Misc SW on FPGAs 653 Sources
260 Task SW on PEs 654 Router Sched
300 Neural Network Training/Inference, Overall 656 Gen Stall
310 Place Neurons 657 Stall
320 Initialize FPGAs 660 Control Info
330 Initialize PEs 661 Dest
340 Training Data => PEs 662 Sent
350 Forward Pass, Delta Pass, Chain Pass, Update Weights 670 Src
360 Training Complete? 710 Wavelet Ingress
370 Weights Out 711 Wait for Wavelet
380 Use Weights for Inference 712 Receive Wavelet
400 Deep Learning Accelerator 713 Wavelet=> Router Q
401 Forward 720 Stall Info
402 Delta 721 Router Q Full?
403 Chain 722 DeAssert Stall
410 ASIC 723 Assert Stall
411 ASIC 730 Wavelet Egress
412 Wafer 731 Q Empty?
420 VO FPGAs 732 Choose?
430 North coupling 733 Stalled?
431 East coupling 734 Send Wavelet
432 South coupling 800 CE
433 West coupling 812 Terminate
497 Particular PE 820 Off Ramp
498 Particular PE 822 Hash
499 PE 824 Qdistr
500 PE 830 Picker
510 Router 834 PC
511 West 836 I-Seq
512 Skip West 840 Dec
513 North 842 RF
514 Skip East 844 D-Seq
515 East 846 DSRs
516 South 848 D-Store
520 Compute Element 852 Data Path
521 Off Ramp 854 Memory
522 On Ramp 860 On Ramp
600 Router 890 Base
610 Data In 896 Scheduling Info
611 skipX+ 897 Qs
612 skipX- 897.0 Qo0
613 X+ 897.N QN
614 X- 898 Active Bits
615 Y+ 898.0 Active Bit 0
616 Y- 898.N Active Bit N
617 On Ramp 899 Block Bits
620 Data Out 899.0 Block Bit 0
621 skipX+ 899.N Block Bit N
622 skipX-— 900 Processing a Wavelet for Task Initiation, Overall
623 X+ 901 Start
624 X- 905 Select Ready Wavelet for Task Initiation
625 Y+ 908 Control/Data?
626 Y- 920 Add (Color * 4) to Base Register to Form Instruction Address
627 Off Ramp 930 Add Lower Index Bits to Base Register to Form Instruction
630 Stall Out Address
631 skipX+ 950 Fetch Instructions From Memory at Instruction Address
632 skipX-— 960 Execute Fetched Instruction(s)
633 X+ 961 Not Terminate
634 X- 962 Terminate
635 Y+ 990 End
636 Y- 1000 Instruction Processing, Overall
637 On Ramp 1010 Check Control Inputs
640 Sources 1012 Branch Stall?
641 skipX+ 1014 Do Nothing
642 skipX-— 1016 Terminate => Scheduler
643 X+ 1020 EX Branch Resolution?
644 X- 1022 D-Seq Stall?
645 Y+ 1024 I-Seq Mode?
646 Y- 1026 Fetch Instr
647 Off Ramp 1028 Terminate Instr?
650 Data Queues 1030 Branch Instr?

US 2018/0314941 Al

Nov. 1, 2018

-continued -continued
Ref. Ref.
Symbol Element Name Symbol Element Name
1032 Update PC Instr => Decode 1551 Start
1040 Process Next Task/Branch PC Task Addr => PC 1552 Picker Selects Wavelet for Processing
1042 Stall Sequencer 1553 Fetch, Execute Instructions
1100 Dependency Management, Overall 1554 End
1101 Activations From Prior Layer 1600 Block and Unblock Instruction Processing Flow, Overall
1102 Receive and Accumulate Activations 1601 Start
1110 Closeout From Prior Layer 1602 Fetch, Decode Instruction
1111 Receive Activation Closeout 1603 Block Instruction?
1112 Start Partial Sums 1604 Block Color(s)
1113 Calculate Partial Sum 1610 Unblock Instruction?
1114 Propagate Partial Sums 1611 Unblock Color(s)
1120 Transmit Activations 1620 Execute Instruction
1121 Activations to Next Layer 1630 End
1122 Closeout to Next Layer 1700 Neural Network
1123 Reschedule 1710 Input Layer
1131 Flow Control Dependency 1711 N11
1132 Output Wavelet to Different PE 1712 N12
1133 Wake Wavelet to Self 1713 N13
1200 Activation Accumulation/Closeout and Partial Sum 1720 Internal Layers
Computation/Closeout, Overall 1721 N21
1201 Start 1721.1, Y5 N21 portions, respectively
1202 Receive Activation 1721.2
1203 Accumulate Activations 1722 N22
1204 Receive Activation Closeout 1722.1, Y5 N22 portions, respectively
1205 Start Partial Sum Ring 1722.2
1206 Receive Partial Sum 1723 N23
1207 Compute Partial Sum 1723.1, Y5 N23 portions, respectively
1208 Transmit Partial Sum 1723.2
1209 Transmit Activations 1724 N24
1210 Transmit Closeout 1724.1, Y N24 portions, respectively
1211 End 1724.2
1301 Sparse Wavelet 1731 N31
1302 Sparse Wavelet Payload 1731.1, Y4 N31 portions, respectively
1320 Control Bit 1731.2,
1321 Index 1731.3,
1321.1 Lower Index Bits 1731.4
1321.2 Upper Index Bits 1732 N32
1322 Sparse Data 1732.1, Y4 N32 portions, respectively
1324 Color 1732.2,
1331 Dense Wavelet 1732.3,
1332 Dense Wavelet Payload 1732.4
1340 Control Bit 1733 N33
1343.1 Dense Data 1740 Output Layer
1343.2 Dense Data 1741 N41
1344 Color 1742 N42
1400 Wavelet Creation Flow, Overall 1791 communication
1401 Start 1791.1 communication portion
1402 Initialize PEs 1792 communication
1403 Set Source 1792.1 communication portion
1404 Set Destination (Fabric) DSR 1793 communication
1404.5 Fetch/Decode Instruction with Destination DSR 1793.1 communication portion
1404.6 Read DSR(s) 1820 PEO
1405 Read (Next) Source Data Element(s) from Queue/Memory 1821 PE1
1406 Provide Data Element(s) as Wavelet to Router 1822 PE2
1407 More Data Elements? 1823 PE3
1408 Transmit Wavelet(s) to Fabric 1824 PE4
1409 Receive Wavelet(s) from Fabric 1825 PES
1410 End 1910 in0
1420 CE of Transmitting PE 1911 inl
1430 Router of Transmitting PE 1912 in2
1440 Router of Receiving PE 1913 in3
1500 Wavelet Receive Flow, Overall 1914 in4
1501 Start 1915 in3
1502 Initialize PEs 1920 out0
1503 Receive Wavelet at Router 1921 outl
1504 To Other PE(s)? 1922 out2
1505 Transmit Wavelet to Output(s) 1923 out3
1506 For Local CE? 1924 out4
1507 Write Wavelet to Picker Queue 1925 out5
1510 End 1930.1 Y Local Compute
1520 Router of Receiving PE 1930.2 Y Local Compute
1530 CE of Receiving PE 1940.1 Y5 Local Storage
1550 Wavelet Consumption Flow, Overall 1940.2 Y Local Storage

US 2018/0314941 Al

Nov. 1, 2018

-continued -continued
Ref. Ref.
Symbol Element Name Symbol Element Name
1950.1 Additional Compute 2192 WLI (Wavelet Index Select)
1950.2 Additional Compute 2210 Circular Memory Buffer Extended Data Structure Descriptor
1960.1 Additional Storage 2211 Type
1960.2 Additional Storage 2212 Start Address
1970 Additional Communication 2213 End Address
2000 Wafer Portion 2214 FIFO
2040, coupling between adjacent PEs, respectively 2215 Push (Activate) Color
2041, 2216 Pop (Activate) Color
2043, 2240 4D Memory Vector Extended Data Structure Descriptor
2044 2241 Type
2050, portion of coupling between adjacent PEs, respectively 2242 Dimensions
2051, 2243 DF (Dimension Format)
2052, 2244.1 Stride Select (for Dimension) 1
2053, 2244.2 Stride Select (for Dimension) 2
2054, 22443 Stride Select (for Dimension) 3
2055, 22444 Stride Select (for Dimension) 4
2056, 2245 Stride
2057 2300 Data Structure Descriptor Flow, Overall
2060 communication 2301 Start
2100 Fabric Input Data Structure Descriptor 2302 Set DSR(s)
2101 Length 2303 Fetch/Decode Instruction with DSR(s)
2102 UTID (Microthread Identifier) 2304 Read DSR(s)
2103 UE (Microthread Enable) 2305 (optional) Set XDSR(s)
2104 SW (SIMD Width) 2306 (optional) Read XDSR(s)
2105 AC (Activate Color) 2310 Read (Next) Source Data Element(s) from Queue/Memory
2106 Term (Terminate Microthread on Control Wavelet) 2311 Perform (Next) Operation(s) on Data Element(s)
2107 CX (Control Wavelet Transform Enable) 2312 Write (Next) Destination Data Element(s) to Queue/Memory
2108 US (Microthread Sparse Mode) 2313 More Data Element(s)?
2109 Type 2316 End
2110 SS (Single Step) 2400 Data Structure Descriptor Decode Flow, Overall
2111 SA (Save Address/Conditional Single Step Mode) 2401 Start
2112 SC (Color Specified, Normal Mode) 2410 Fabric Vector
2113 SQ (Queue Specified, Normal Mode) 2411 Type = Fabric?
2114 CH (Color, High Bits) 2412 Access via DSD
2120 Fabric Output Data Structure Descriptor 2420 Memory Vector
2121 Length 2421 Type = XDSR?
2122 UTID (Microthread Identifier) 2422 Read XDSR Specified via DSD
2123 UE (Microthread Enable) 2423 Type = 4D Vector?
2124 SW (SIMD Width) 2424 (optional) Read Stride Register(s)
2125 AC (Activate Color) 2427 Access 1D via DSD
2126 Color 2428 Access 4D via XDSD
2127 C (Output Control Bit) 2429 Access Circular Buffer via XDSD
2128.1 Index Low 2499 End
2128.2 Index High 2510 Multiple Operand Instruction
2129 Type 2511 Instruction Type
2130 SS (Single Step) 2512 Opcode
2131 SA (Save Address/Conditional Single Step Mode) 2513 Operand 0 Encoding
2132 WLI (Wavelet Index Select) 2513.1 Operand 0 Type
2140 1D Memory Data Structure Descriptor 2513.2 Operand 0
2141 Length 2514 Operand 1 Encoding
2142 Base Address 2514.1 Operand 1 Type
2149 Type 2514.2 Operand 1
2150 SS (Single Step) 2515 Terminate
2151 SA (Save Address/Conditional Single Step Mode) 2520 One Source, No Destination Operand Instruction
2152 WLI (Wavelet Index Select) 2521 Instruction Type
2153 Stride 2522 Opcode
2160 4D Memory Data Structure Descriptor 2523 Operand 1 Encoding
2161 Length 2523.1 Operand 1 Type
2161.1 Length Lower Bits 2523.2 Operand 1
2161.2 Length Upper Bits 2524 Immediate
2162 Base Address 2525 Terminate
2169 Type 2530 Immediate Instruction
2170 SS (Single Step) 2531 Instruction Type
2171 SA (Save Address/Conditional Single Step Mode) 2532 Opcode
2172 WLI (Wavelet Index Select) 2533.2 Operand 0
2180 Circular Memory Buffer Data Structure Descriptor 2534.1 Immediate Low
2181 Length 2534.2 Immediate High
2182 Base Address 2534 Immediate
2184 SW (SIMD Width) 2611 First Forward Pass
2188 FW (FIFO Wrap Bit) 2612 Second Forward Pass
2189 Type 2621 First Backward Pass
2190 SS (Single Step) 2622 Second Backward Pass
2191 SA (Save Address/Conditional Single Step Mode) 2631 Mini-Batch Size (N)

US 2018/0314941 Al

-continued

Ref.
Symbol Element Name
2632 Overhead
2633 Update Interval (U)
2651 Forward Pass
2661 Backward Pass
2665 Forward Pass
2666 Backward Pass
2667 Weight Update Use
2671 Forward Pass
2681 Backward Pass
2685 Activation Storage
2686 Recomputed Activation Storage
2701 Previous Layer
2702 Subsequent Layer
2703 Previous Layer
2704 Subsequent Layer
2710 Compute
2711 F
2712 B
2715 Storage
2716 A
2717 w
2718 w
2720 Compute
2721 F
2722 B
2725 Storage
2726 A
2727 w
2728 w
2729 A
2730 Compute
2735 Storage
2740 Compute
2745 Storage
2781 A,
2782 A,
2783 As,
2784 AL,
2791 Ay,
2792 A,
2793 Az,
2794 Ay,
2795 A,
2796 3
2901 f_rxact:acc
2902 f_rxact:close
2903 f_ psum:prop
2904 f txact:tx
2911 Activations
2912 Closeouts
2913 Flow
2914 Wake
2915 Reschedule
2916 Start Psums
2921 Activations
2922 Closeouts
2930 Prop Psums
2931 Prop Psums

DETAILED DESCRIPTION
[0060] A detailed description of one or more embodiments

of'the invention is provided below along with accompanying
figures illustrating selected details of the invention. The
invention is described in connection with the embodiments.
The embodiments herein are understood to be merely exem-
plary, the invention is expressly not limited to or by any or
all of the embodiments herein, and the invention encom-
passes numerous alternatives, modifications, and equiva-
lents. To avoid monotony in the exposition, a variety of word

Nov. 1, 2018

labels (such as: first, last, certain, various, further, other,
particular, select, some, and notable) may be applied to
separate sets of embodiments; as used herein such labels are
expressly not meant to convey quality, or any form of
preference or prejudice, but merely to conveniently distin-
guish among the separate sets. The order of some operations
of disclosed processes is alterable within the scope of the
invention. Wherever multiple embodiments serve to
describe variations in process, system, and/or program
instruction features, other embodiments are contemplated
that in accordance with a predetermined or a dynamically
determined criterion perform static and/or dynamic selection
of one of a plurality of modes of operation corresponding
respectively to a plurality of the multiple embodiments.
Numerous specific details are set forth in the following
description to provide a thorough understanding of the
invention. The details are provided for the purpose of
example and the invention may be practiced according to the
claims without some or all of the details. For the purpose of
clarity, technical material that is known in the technical
fields related to the invention has not been described in detail
so that the invention is not unnecessarily obscured.

INTRODUCTION

[0061] This introduction is included only to facilitate the
more rapid understanding of the Detailed Description; the
invention is not limited to the concepts presented in the
introduction (including explicit examples, if any), as the
paragraphs of any introduction are necessarily an abridged
view of the entire subject and are not meant to be an
exhaustive or restrictive description. For example, the intro-
duction that follows provides overview information limited
by space and organization to only certain embodiments.
There are many other embodiments, including those to
which claims will ultimately be drawn, discussed throughout
the balance of the specification.

[0062] In an aspect conceptually related to continuous
propagation for accelerated deep learning, techniques in
advanced deep learning provide improvements in one or
more of accuracy, performance, and energy efficiency, such
as accuracy of learning, accuracy of prediction, speed of
learning, performance of learning, and energy efficiency of
learning. An array of processing elements performs flow-
based computations on wavelets of data. Each processing
element has a respective compute element and a respective
routing element. Each compute element has processing
resources and memory resources. Each router enables com-
munication via wavelets with at least nearest neighbors in a
2D mesh. Stochastic gradient descent, mini-batch gradient
descent, and continuous propagation gradient descent are
techniques usable to train weights of a neural network
modeled by the processing elements. Reverse checkpoint is
usable to reduce memory usage during the training.

[0063] In an aspect conceptually related to fabric vectors
for accelerated deep learning, techniques in advanced deep
learning provide improvements in one or more of accuracy,
performance, and energy efficiency. An array of processing
elements performs flow-based computations on wavelets of
data. Each processing element has a respective compute
element and a respective routing element. Each compute
element has memory. Each router enables communication
via wavelets with at least nearest neighbors in a 2D mesh.
Routing is controlled by respective virtual channel specifiers
in each wavelet and routing configuration information in

US 2018/0314941 Al

each router. Instructions executed by the compute element
include one or more operand specifiers, some of which
specify a data structure register storing a data structure
descriptor. The data structure descriptor describes an oper-
and as a fabric vector or a memory vector. The data structure
descriptor further describes the length of the fabric vector,
whether the fabric vector is eligible for microthreading, and
a number of data elements of the fabric vector to receive,
transmit, and/or process in parallel. The data structure
descriptor further specifies virtual channel and task identi-
fication information relating to processing the fabric vector,
whether to terminate upon receiving a control wavelet, and
whether to mark an outgoing wavelet as a control wavelet.

[0064] In an aspect conceptually related to data structure
descriptors for accelerated deep learning, techniques in
advanced deep learning provide improvements in one or
more of accuracy, performance, and energy efficiency. An
array of processing elements performs flow-based compu-
tations on wavelets of data. Each processing element has a
respective compute element and a respective routing ele-
ment. Each compute element has memory. Each router
enables communication via wavelets with at least nearest
neighbors in a 2D mesh. Routing is controlled by respective
virtual channel specifiers in each wavelet and routing con-
figuration information in each router. Instructions executed
by the compute element include one or more operand
specifiers, some of which specify a data structure register
storing a data structure descriptor. The data structure
descriptor describes an operand as a fabric vector or a
memory vector. The data structure descriptor further
describes the memory vector as one of a one-dimensional
vector, a four-dimensional vector, or a circular buffer vector.
Optionally, the data structure descriptor specifies an
extended data structure register storing an extended data
structure descriptor. The extended data structure descriptor
specifies parameters relating to a four-dimensional vector or
a circular buffer vector.

[0065] In an aspect conceptually related to neuron smear-
ing for accelerated deep learning, techniques in advanced
deep learning provide improvements in one or more of
accuracy, performance, and energy efficiency. An array of
processing elements performs flow-based computations on
wavelets of data. Each processing element has a respective
compute element and a respective routing element. Each
compute element has memory. Each router enables commu-
nication via wavelets with at least nearest neighbors in a 2D
mesh. Routing is controlled by respective virtual channel
specifiers in each wavelet and routing configuration infor-
mation in each router. At least a first single neuron is
implemented using resources of a plurality of the array of
processing elements. At least a portion of a second neuron
is implemented using resources of one or more of the
plurality of processing elements. In some usage scenarios,
the foregoing neuron implementation enables greater per-
formance by enabling a single neuron to use the computa-
tional resources of multiple processing elements and/or
computational load balancing across the processing ele-
ments while maintaining locality of incoming activations for
the processing elements.

[0066] In an aspect conceptually related to task synchro-
nization for accelerated deep learning, techniques in
advanced deep learning provide improvements in one or
more of accuracy, performance, and energy efficiency. An
array of processing elements performs flow-based compu-

Nov. 1, 2018

tations on wavelets of data. Each processing element has a
respective compute element and a respective routing ele-
ment. Each compute element has memory. Each router
enables communication via wavelets with at least nearest
neighbors in a 2D mesh. Routing is controlled by respective
virtual channel specifiers in each wavelet and routing con-
figuration information in each router. A particular one of the
compute elements conditionally selects for task initiation a
previously received wavelet specifying a particular one of
the virtual channels. The conditional selecting excludes the
previously received wavelet for selection until at least
block/unblock state maintained for the particular virtual
channel is in an unblock state. The compute elements
execute block/unblock instructions to modify the block/
unblock state.

[0067] In an aspect conceptually related to datatlow trig-
gered tasks for accelerated deep learning, techniques in
advanced deep learning provide improvements in one or
more of accuracy, performance, and energy efficiency. An
array of processing elements performs flow-based compu-
tations on wavelets of data. Each processing element has a
respective compute element and a respective routing ele-
ment. Each compute element has memory. Each router
enables communication via wavelets with at least nearest
neighbors in a 2D mesh. Routing is controlled by respective
virtual channel specifiers in each wavelet and routing con-
figuration information in each router. A particular one of the
compute elements receives a particular wavelet comprising
a particular virtual channel specifier and a particular data
element. Instructions are read from the memory of the
particular compute element based at least in part on the
particular virtual channel specifier. The particular data ele-
ment is used as an input operand to execute at least one of
the instructions.

[0068] Inan aspect conceptually related to control wavelet
for accelerated deep learning, techniques in advanced deep
learning provide improvements in one or more of accuracy,
performance, and energy efficiency. An array of processing
elements performs flow-based computations on wavelets of
data. Each processing element has a respective compute
element and a respective routing element. Each compute
element has a memory. Each router enables communication
via wavelets with at least nearest neighbors in a 2D mesh. A
particular one of the compute elements receives a wavelet.
If a control specifier of the wavelet is a first value, then
instructions are read from the memory of the particular
compute element in accordance with an index specifier of
the wavelet. If the control specifier is a second value, then
instructions are read from the memory of the particular
compute element in accordance with a virtual channel
specifier of the wavelet. Then the particular compute ele-
ment initiates execution of the instructions.

[0069] In an aspect conceptually related to wavelet repre-
sentation for accelerated deep learning, techniques in
advanced deep learning provide improvements in one or
more of accuracy, performance, and energy efficiency. An
array of processing elements performs flow-based compu-
tations on wavelets of data. Each processing element has a
respective compute element and a respective routing ele-
ment. Hach compute element has dedicated storage. Each
router enables communication with at least nearest neigh-
bors in a 2D mesh. The communication is via wavelets in
accordance with a representation comprising an index speci-
fier, a virtual channel specifier, an index specifier, a data

US 2018/0314941 Al

element specifier, and an optional control/data specifier. The
virtual channel specifier and the index specifier are associ-
ated with one or more instructions. The index specifier is
associated with at least a first instruction operand of the one
or more instructions. The data element is associated with at
least a second instruction operand of the one or more
instructions.

[0070] A first example of accelerated deep learning is
using a deep learning accelerator to train a neural network.
A second example of accelerated deep learning is using a
deep learning accelerator to operate a trained neural network
to perform inferences. A third example of accelerated deep
learning is using a deep learning accelerator to train a neural
network and subsequently perform inference with any one or
more of the trained neural network, information from same,
and a variant of same.

[0071] Examples of neural networks include Fully Con-
nected Neural Networks (FCNNs), Recurrent Neural Net-
works (RNNs), Convolutional Neural Networks (CNNs),
Long Short-Term Memory (LSTM) networks, autoencoders,
deep belief networks, and generative adversarial networks.
[0072] An example of training a neural network is deter-
mining one or more weights associated with the neural
network, such as by hardware acceleration via a deep
learning accelerator. An example of making an inference is
using a trained neural network to compute results by pro-
cessing input data based on weights associated with the
trained neural network.

[0073] A neural network processes data according to a
dataflow graph comprising layers of neurons. Stimuli (e.g.,
input data) is received by an input layer of neurons and the
computed results of the data flow graph (e.g., output data)
are provided by an output layer of neurons. Example layers
of neurons include input layers, output layers, rectified linear
unit layers, fully connected layers, recurrent layers, long
short-term memory layers, convolutional layers, kernel lay-
ers, dropout layers, and pooling layers. A neural network is
conditionally and/or selectively trained, subject to hardware
acceleration. After being trained, a neural network is con-
ditionally and/or selectively used for inference, subject to
hardware acceleration.

[0074] An example of a deep learning accelerator is one or
more relatively specialized hardware elements operating in
conjunction with one or more software elements to train a
neural network and/or perform inference with a neural
network relatively more efficiently than using relatively less
specialized hardware elements. Some implementations of
the relatively specialized hardware elements include one or
more hardware logic circuitry elements such as transistors,
resistors, inductors, capacitors, wire interconnects, combi-
natorial logic (e.g., NAND, NOR) gates, latches, register
files, memory arrays, tags for memory arrays, content-
addressable memories, flash, ROM, DRAM, SRAM, Seri-
alizer/Deserializer (SerDes), /O drivers, and the like, such
as implemented via custom logic, synthesized logic, ASICs,
and/or FPGAs. Some of the relatively less specialized hard-
ware elements include conventional CPUs and conventional
GPUs.

[0075] An example implementation of a deep learning
accelerator is enabled to process dataflow in accordance
with computations performed for training of a neural net-
work and/or inference with a neural network. Some deep
learning accelerators comprise processing elements coupled
via a fabric and enabled to communicate with each other via

Nov. 1, 2018

the fabric. Sometimes the processing elements and the fabric
are collectively referred to as a fabric of processing ele-
ments.

[0076] An example implementation of a processing ele-
ment is enabled to communicate and process wavelets. In
various circumstances, the wavelets correspond to dataflow
and/or instruction flow in accordance with communication
and/or processing enabling computations performed for
training of and/or inference using a neural network.

[0077] An example processing element comprises a router
to communicate wavelets via the fabric and a compute
element to process the wavelets. An example router is
coupled to a plurality of elements: a fabric, an off ramp to
the compute element, and an on ramp from the compute
element. An example coupling between the router and the
fabric enables communication between the router and, e.g.,
four logically and/or physically adjacent processing ele-
ments. The router variously receives wavelets from the
fabric and the on ramp. The router variously transmits
wavelets to the fabric and the off ramp.

[0078] An example implementation of a compute element
is enabled to process wavelets by initiating tasks and execut-
ing instructions associated with the wavelets, and accessing
data associated with the wavelets and/or the instructions.
The instructions are in accordance with an instruction set
architecture comprising arithmetic instructions, control flow
instructions, datatype conversion instructions, configuration
instructions, fabric management instructions, and load/store
instructions. The instructions operate on operands compris-
ing various datatypes, e.g., integer datatypes and floating-
point datatypes of various widths. The operands variously
comprise scalar operands and vector operands. In various
embodiments and/or usage scenarios, a vector variously
represents weights of a neural network, inputs or stimuli of
a neural network, activations of a neural network, and/or
partial sums of a neural network. In some scenarios, a vector
is a sparse vector (e.g., a vector of neuron activations) and
comprises sparse data elements (e.g., only non-zero ele-
ments). In some other scenarios, a vector is a dense vector
(e.g., pixel values) and comprises dense data elements (e.g.,
all elements of the vector, including zero elements).
[0079] An example compute element comprises hardware
elements that collectively execute the instructions associated
with a wavelet by performing operations specified by the
instructions (e.g., arithmetic operations, control flow opera-
tions, and load/store operations). Examples of the hardware
elements include picker queues, a picker, a task definition
table, an instruction sequencer, an instruction decoder, a data
sequencer, a register file, a memory, a pseudo-random num-
ber generator, and an ALU. Some implementations of the
hardware elements are in accordance with hardware logic
circuitry elements as described elsewhere herein. Sometimes
a compute element is referred to as a compute engine.
Sometimes the compute scheduler is referred to as a picker
and the compute scheduler queues are referred to as picker
queues.

[0080] An example fabric is a collection of logical and/or
physical couplings between processing elements and/or
within a single processing element. The fabric is usable to
implement logical and/or physical communication topolo-
gies such as a mesh, a 2D mesh, a 3D mesh, a hypercube, a
torus, a ring, a tree, or any combination thereof. An example
of a physical coupling between processing elements is a set
of physical interconnects (comprising optional and/or selec-

US 2018/0314941 Al

tive buffering) between physically-coupled processing ele-
ments. A first example of physically-coupled processing
elements is immediately physically adjacent processing ele-
ments, such as a first processing element located directly
beside (such as ‘north’, ‘south’, ‘east’, or ‘west’) of a second
processing element. A second example of physically-
coupled processing elements is relatively physically nearby
processing elements, such as a first processing element
located within a relatively small number of intervening
processing elements, e.g., one or two ‘rows’ and/or ‘col-
umns’ away from a second processing element. A third
example of physically-coupled processing elements is rela-
tively physically far away processing elements, such as a
first processing element located physical relatively far away
from a second processing element, such as a distance limited
by signal propagation (with or without optional and/or
selective buffering) within a clock cycle and/or clock sub-
cycle associated with the processing elements. An example
of physical coupling within a single processing element
(having, e.g., a compute element and a router) is an on ramp
coupling output information from the compute element to
the router, and an off ramp coupling input information from
the router to the compute element. In some situations, the
router routes information from the on ramp to the off ramp.
[0081] An example of a logical coupling between process-
ing elements is a virtual channel as implemented by routers
within processing elements. A route between a first process-
ing element and a second processing element is imple-
mented, e.g., by routers within processing elements along
the route forwarding in accordance with the virtual channel
and routing configuration information. An example of a
logical coupling within a single particular processing ele-
ment (having, e.g., a router) is a virtual channel as imple-
mented by the router, enabling the particular processing
element to send information via the virtual channel to the
particular processing element. The router forwards “inter-
nally” with respect to the particular processing element in
accordance with the virtual channel and routing configura-
tion information.

[0082] An example wavelet is a bundle of information
communicated between processing elements via the fabric.
An example wavelet comprises a wavelet payload and a
color. A wavelet payload comprises data and is associated
with instructions. A first response to a wavelet received by
a compute element of a processing element comprises the
compute element initiating a task, such as corresponding to
processing of instructions associated with the wavelet. A
second response to a wavelet received by a compute element
of a processing element comprises the compute element
processing data of the wavelet. Example types of wavelets
include dense wavelets and sparse wavelets, as well as data
wavelets and control wavelets.

[0083] Wavelets are used, for example, for communicating
between processing elements. In a first scenario, a first
processing element transmits wavelets to a second process-
ing element. In a second scenario, an external device (e.g.,
an FPGA) transmits wavelets to a processing element. In a
third scenario, a processing element transmits wavelets to an
external device (e.g., an FPGA).

[0084] An example virtual channel is one or more com-
munication pathways specified by a color and enabled, e.g.,
by a fabric and one or more routers. A wavelet comprising
a particular color is sometimes referred to as being associ-
ated with a particular virtual channel associated with the

Nov. 1, 2018

particular color. A first example of a color is a fabric color
specifying a virtual channel between two different process-
ing elements. In some embodiments, a fabric color is a 5-bit
integer. A second example of a color is a local color
specifying a virtual channel from a processing element to the
processing element. In some embodiments, a color is a 6-bit
integer and specifies one of a fabric color and a local color.
[0085] An example task comprises a collection of instruc-
tions executed in response to a wavelet. An example instruc-
tion comprises an operation and optionally one or more
operands specifying locations of data elements to be pro-
cessed in accordance with the operation. A first example of
an operand specifies data elements in memory. A second
example of an operand specifies data elements communi-
cated (e.g., received or transmitted) via the fabric. An
example of a data sequencer determines the locations of data
elements. An example of an instruction sequencer deter-
mines an address in memory of instructions associated with
a wavelet.

[0086] An example picker queue is enabled to hold wave-
lets received via an off ramp of the fabric for processing in
the compute element. An example of a picker selects a
wavelet from the picker queue for processing.

[0087] An example of an Integrated Circuit (IC) is a
collection of circuitry implemented on a single portion of
semiconductor material. An example of an Application-
Specific Integrated Circuit (ASIC) is an IC designed for a
particular use. An example of wafer-scale integration is
implementing a system using all or a significant portion of
a wafer as an element of the system, e.g., by leaving the
wafer whole or substantially whole.

[0088] In some embodiments and/or usage scenarios,
wafer-scale integration enables connecting multiple ele-
ments in a system via wafer interconnect formed using
silicon fabrication processes instead of via inter-chip inter-
connect, and thus improves any one or more of improved
performance, cost, reliability, and energy efficiency. As a
specific example, a system implemented using wafer-scale
integration technology enables implementation of three mil-
lion PEs on a single wafer, each of the PEs having band-
width to nearest physical neighbors that is greater than a
comparable system using other-than wafer-scale integration
technology. The greater bandwidth enables the system
implemented using wafer-scale integration technology to
relatively efficiently train and/or perform inferences for
larger neural networks than the system implemented using
other-than wafer-scale integration technology.

Acronyms

[0089] At least some of the various shorthand abbrevia-
tions (e.g., acronyms) defined here refer to certain elements
used herein.

Acronym Description

ASIC Application Specific Integrated Circuit
CE Compute Element

CNN Convolutional Neural Network

CPGD Continuous Propagation Gradient Descent
CPU Central Processing Unit

CRM Computer Readable Media

DSD Data Structure Descriptor

DSP Digital Signal Processor

DSR Data Structure Register

US 2018/0314941 Al

-continued
Acronym Description
FCNN Fully Connected Neural Network
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
HPC High-Performance Computing
HW HardWare
IC Integrated Circuit
IE Inference Engine
LFSR Linear Feedback Shift Register
LSB Least Significant Bit
LSTM Long Short-Term Memory
MBGD Mini-Batch Gradient Descent
ML Machine Learning
MSB Most Significant Bit
PE Processing Element
PRNG Pseudo Random Number Generator
RNN Recurrent Neural Network
RCP Reverse CheckPoint
SGD Stochastic Gradient Descent
SW SoftWare
XDSD eXtended Data Structure Descriptor
XDSR eXtended Data Structure Register
Example Embodiments
[0090] In concluding the introduction to the detailed

description, what follows is a collection of example embodi-
ments, including at least some explicitly enumerated as
“ECs” (Example Combinations), providing additional
description of a variety of embodiment types in accordance
with the concepts described herein; these examples are not
meant to be mutually exclusive, exhaustive, or restrictive;
and the invention is not limited to these example embodi-
ments but rather encompasses all possible modifications and
variations within the scope of the issued claims and their
equivalents.

[0091] EC100) A system comprising:

[0092] a fabric of processor elements, each processor
element comprising a fabric router and a compute
engine enabled to perform dataflow-based and instruc-
tion-based processing;

[0093] wherein each processor element selectively
communicates fabric packets with others of the pro-
cessor elements; and

[0094] wherein each compute engine selectively per-
forms the processing in accordance with a virtual
channel specifier and a task specifier of each fabric
packet the compute engine receives.

[0095] EC100b) A system comprising:

[0096] a fabric of processor elements, each processor
element comprising a fabric router and a compute
engine;

[0097] wherein each processor element selectively
communicates fabric packets with others of the pro-
cessor elements; and

[0098] wherein each compute engine selectively per-
forms dataflow processing and instruction processing
respectively in accordance with a dataflow field and an
instruction field of each fabric packet the compute
engine receives.

[0099] EC100c) The system of EC100, wherein the pro-
cessing is in accordance with a dataflow graph.

[0100] EC100d) The system of EC100, wherein a work-
load is executed comprising predominantly datatlow-based
processing with minimal instruction-based processing.

10

Nov. 1, 2018

[0101] EC100e) The system of EC100d, wherein the sys-
tem implements a Long Short Term Memory (LSTM) neural
network model.

[0102] EC100f) The system of EC100, wherein a work-
load is executed comprising predominantly instruction-
based processing with minimal dataflow-based processing.

[0103] EC100g) The system of EC100, wherein the sys-
tem is implemented at least in part using wafer-scale inte-
gration.

[0104] EC100h) The system of EC100, wherein the fabric

of processor elements is implemented at least in part using
VLSI fabrication.

[0105] EC101) The system of EC100, wherein the virtual
channel specifier selects independent respective routing
paths in the fabric.

[0106] EC101b) The system of EC100, wherein the virtual
channel specifier selects routing paths in the fabric to
perform multicast.

[0107] EC101c¢) The system of EC100, wherein the virtual
channel specifier selects routing paths in the fabric to
perform load splitting.

[0108] EC102) The system of EC100, wherein the task
specifier selects one or more operations to perform.

[0109] EC103) The system of EC100, wherein the fabric
comprises a 2D array of the processor elements.

[0110] EC103b) The system of EC100, wherein the fabric
comprises a processor element interconnection topology
selected from the group consisting of fully connected, star,
ring, array, mesh, hypercube, torus, and tree.

[0111] EC103c¢) The system of EC100, wherein the fabric
comprises a processor element interconnection topology
dimension selected from the group consisting of 1D, 2D, 3D,
and a dimension greater than 3D.

[0112] EC104) The system of EC100, wherein the system
is enabled to execute machine learning workloads.

[0113] EC105) The system of EC100, wherein the system
is trained to perform an inference application.

[0114] EC105b) The system of EC100, wherein the sys-
tem performs an inference application.

[0115] EC106) The system of EC100, wherein the system
implements a deep neural network trained to perform object
classification and/or detection.

[0116] EC107) The system of EC100, wherein the system
implements a deep neural network trained to perform an
inference application selected from the group consisting of
text translation, optical character recognition, image classi-
fication, facial recognition, scene recognition for a self-
driving car, speech recognition, data analysis for high energy
physics, and drug discovery.

[0117] EC108) The system of EC100, wherein the fabric is
organized as a plurality of periphery processor elements and
a plurality of interior processor elements, and each of the
interior processor elements is coupled in at least four logical
directions respectively to at least four others of the plurality
of processor elements.

[0118] EC109) The system of EC100, wherein each com-
pute engine comprises a memory, a data path, and a hybrid
dataflow and instruction execution controller.

[0119] EC110) The system of EC109, wherein each com-
pute engine operates in accordance with a multi-stage com-
pute engine pipeline having a plurality of compute engine
pipeline stages.

[0120] ECI111) The system of EC109, wherein the instruc-
tion execution controller comprises an instruction sequencer

US 2018/0314941 Al

implemented using one or more of microcode, PLLAs, one or
more counters, and a gate-level state machine.
[0121] EC112) The system of EC109, wherein each com-
pute engine further comprises a register file, an instruction
decoder, an instruction cache, and a data cache.
[0122] ECI112b) The system of EC109, wherein each
compute engine further comprises a register file, an instruc-
tion decoder, an instruction buffer, and a data buffer.
[0123] ECI113) The system of EC100, wherein:

[0124] each compute engine is configured to perform a

predefined set of basic operations in response to receiv-

ing a corresponding basic instruction selected from a

predefined native instruction set of codes; and further

comprising
[0125] a training workload comprising

[0126] a first set of machine codes selected from the
native instruction set for performing a mapping of at
least a part of a neuron onto the compute engine of
the processor element, the mapping comprising man-
aging at least one partial-neuron weight,

[0127] a second set of machine codes selected from
the native instruction set for performing a forward
pass to propagate activations in a forward logical
direction based at least in part on the at least one
partial-neuron weight, the forward pass initiated
responsive to an input sample,

[0128] a third set of machine codes selected from the
native instruction set for performing a delta pass in
a backward logical direction to generate deltas, the
delta pass initiated responsive to completion of the
forward pass,

[0129] a fourth set of machine codes selected from
the native instruction set for performing a chain pass
to calculate gradients based on the deltas, and

[0130] a fifth set of machine codes selected from the
native instruction set for performing a selective
update of the at least one partial-neuron weight in
accordance with a predetermined learning rule and
based at least in part on the deltas; and

[0131] wherein each compute engine comprises storage

for the at least one partial-neuron weight.

[0132] EC113a) The system of EC113, wherein each basic
instruction is performed in accordance with the task specifier
of a respective fabric packet of the fabric packets.
[0133] ECI113b) The system of EC113, wherein the fabric
comprises a 2D array of the processor elements comprising
a first, second, third, and fourth physical directions, the first
and second physical directions being collinear and opposite,
the third and fourth physical directions being collinear and
opposite, the first and third physical directions being
orthogonal, and the forward logical direction is in the first
physical direction and the backward logical direction is in
the second physical direction.
[0134] EC113c) The system of EC113, wherein the train-
ing workload further comprises a sixth set of machine codes
selected from the native instruction set for performing a
nonlinear activation function.
[0135] EC113d) The system of EC113c, wherein the non-
linear activation function is selected from the group con-
sisting of sigmoid, tan h, and ReL.U.
[0136] EC114) The system of EC113, wherein the map-
ping is in accordance with initializing the fabric to imple-
ment a partitioning of a neural network into a plurality of
layers, the neuron is a first neuron of a plurality of neurons

Nov. 1, 2018

of the neural network, the first neuron is comprised in a first
layer of the plurality of layers, and each of the plurality of
neurons is mapped in a distributed manner across a plurality
of the processor elements of the fabric.

[0137] ECI115) The system of EC114, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer in the same
amount of time.

[0138] ECI115b) The system of EC114, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer within a same
predetermined amount of time.

[0139] EC115c) The system of EC114, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer within a same
time period determined in real time.

[0140] EC116) The system of EC114, wherein the plural-
ity of layers operates as a logical fabric pipeline comprising
logical fabric pipeline stages, each logical fabric pipeline
stage comprising completion of all of the passes for each
layer, the completion for each layer taking a time step
comprising the same amount of time.

[0141] ECI116b) The system of EC114, wherein each of
the plurality of layers operates as a logical fabric pipeline
stage of a respective logical fabric pipeline of each of the
passes, the completion for each layer taking a time step
comprising the same amount of time.

[0142] ECI117) The system of EC114, wherein as each
input sample of a training set streams through at least a first
plurality of the processor elements across the plurality of
layers, the neuron weights are selectively updated in the first
plurality of the processor elements across the plurality of
layers.

[0143] ECI117b) The system of EC118, wherein as each
input sample of a training set streams through at least a first
plurality of the processor elements across the plurality of
layers, the neuron weights are selectively updated in the first
plurality of the processor elements across the plurality of
layers, and the streaming and updating is ongoing for each
time step over a plurality of time steps.

[0144] ECI119) The system of EC120, further comprising
a digital clock, and wherein the time step is an integral
multiple of a clock-cycle of the digital clock.

[0145] EC118b) The system of EC120, further comprising
a digital clock, and wherein the time step is a variable
amount of time.

[0146] ECI118c) The system of ECI121 or ECI118b,
wherein the time step is determined in real-time.

[0147] EC122) The system of EC114, further comprising:

[0148] wherein each compute engine operates in accor-
dance with a multi-stage compute engine pipeline hav-
ing a plurality of compute engine pipeline stages, a
compute engine machine cycle comprising the time to
complete each compute engine pipeline stage, a com-
pute engine pipeline cycle comprising the time to
complete the plurality of compute engine pipeline
stages;

[0149] wherein the compute engine machine cycle com-
prises a first multiple of a clock-cycle of a digital clock;

[0150] wherein the plurality of layers operates as a
logical fabric pipeline comprising logical fabric pipe-
line stages, each logical fabric pipeline stage compris-

US 2018/0314941 Al

ing completion of all of the passes for each layer, a time
step comprising the time to complete each logical
fabric pipeline stage; and

[0151] wherein the time step comprises a second mul-
tiple of the compute engine pipeline cycle.

[0152] ECI123) The system of EC122, wherein the first
multiple is one.
[0153] EC124) The system of EC122, wherein the second

multiple is in the hundreds to thousands.

[0154] ECI125) The system of EC120, wherein for each
time step over a plurality of time steps while forward
propagation of activations are ongoing, the at least one
partial-neuron weight is selectively updated within a first
plurality of the processor elements in response to changes in
backward propagating data within the first plurality of the
processor elements.

[0155] EC126) The system of EC120, wherein the at least
one partial-neuron weight is selectively updated each time
step over a plurality of time steps.

[0156] EC123b) The system of EC117, EC117b, EC122,
or EC123, wherein the selective updating is in accordance
with a continuous propagation gradient descent process.
[0157] EC127) The system of EC114, wherein the neural
network comprises over a thousand layers.

[0158] EC128) The system of EC114, wherein the plural-
ity of neurons comprises billions of neurons.

[0159] ECI125b) The system of EC114, wherein the plu-
rality of neurons comprises millions of neurons.

[0160] EC125c¢) The system of EC114, wherein the neural
network comprises at least 10 weights per neuron for at least
some of the plurality of neurons.

[0161] EC125d) The system of EC114, wherein the neural
network comprises at least 1000 weights per neuron for at
least some of the plurality of neurons.

[0162] EC129) The system of EC114, wherein the neural
network comprises billions of weights per layer.

[0163] ECI126b) The system of EC114, wherein the neural
network comprises millions of weights per layer.

[0164] ECI130) The system of EC114, wherein for each
layer of the neural network, incoming activations are
weighted to create partial sums that are accumulated to
generate output activations for the layer, and the accumu-
lated weighted partial sums represent the neurons and asso-
ciated synapses of the neural network.

[0165] EC127b) The system of EC127, wherein each
weight corresponds to a synapse, each partial sum corre-
sponds to a stimulus, the accumulated weighted partial sums
correspond to a total stimulus, and each output activation for
the layer corresponds to a neuron output.

[0166] EC131) The system of EC113, wherein an iteration
of the training workload is performed for each of a plurality
of input samples collectively comprising a training set.
[0167] EC132) The system of EC131, wherein the prede-
termined learning rule specifies that the at least one partial-
neuron weight is updated after the completion of all the
passes for the entire training set.

[0168] EC129b) The system of EC129, wherein the pre-
determined learning rule is in accordance with a stochastic
gradient descent process.

[0169] EC129c) The system of EC129, wherein the pre-
determined learning rule is in accordance with a mini-batch
gradient descent process.

12

Nov. 1, 2018

[0170] EC129d) The system of EC129, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.

[0171] EC133) The system of EC131, wherein the training
set is partitioned into a plurality of so-called mini-batches
and the predetermined learning rule specifies that the at least
one partial-neuron weight is updated after the completion of
all the passes for the input samples comprised in each of the
mini-batches.

[0172] EC134) The system of EC131, wherein the training
set is partitioned into a plurality of so-called mini-batches
and the predetermined learning rule specifies that the at least
one partial-neuron weight is updated after the completion of
all the passes for each input sample of each of the mini-
batches.

[0173] ECI131b) The system of EC131, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.

[0174] EC135) The system of EC134, wherein the forward
pass incorporates weight updates within a first plurality of
the processor elements while the mini-batch learning is
ongoing within the first plurality of the processor elements.
[0175] EC136) The system of EC113, wherein the storage
is comprised in a memory local to the compute engine.
[0176] EC133b) The system of EC113, wherein the stor-
age is comprised in the compute engine.

[0177] EC133b) The system of EC113, wherein the stor-
age is a respective memory attached to each compute engine.
[0178] EC137) The system of EC113, wherein the storage
is enabled to store a 2D matrix data structure.

[0179] EC134b) The system of EC113, wherein the stor-
age is enabled to store a multidimensional data structure.
[0180] EC134c) The system of EC113, wherein the stor-
age is enabled to store a tensor data structure comprising a
dimension selected from the group consisting of 2D, 3D, 4D,
5D, and 6D.

[0181] EC138) The system of EC113, wherein each com-
pute engine further comprises storage for gradient accumu-
lation, forward partial sums, delta partial sums, and forward
pass activations.

[0182] EC139) The system of EC114, wherein data propa-
gates to a logical end of the neural network during the
forward pass and circulates back in a reverse logical direc-
tion during the delta and chain passes.

[0183] EC140) The system of EC113, wherein the forward
pass saves the activations for use by the delta and chain
passes.

[0184] EC141) The system of EC113, wherein each pro-
cessor element is time shared across the forward, delta and
chain passes.

[0185] EC142) The system of EC131, wherein for each
input sample, the system is enabled to selectively update the
at least one partial-neuron weight in accordance with the
predetermined learning rule responsive to completion of the
forward pass, the delta pass, and the chain pass correspond-
ing to the input sample.

[0186] EC139b) The system of EC139, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.

[0187] EC143) The system of EC142, wherein the system
is enabled for each forward pass to use weight information
provided by the most recent selective update of the at least
one partial-neuron weight.

US 2018/0314941 Al

[0188] EC144) The system of EC143, wherein the system
is enabled to initiate a forward pass of a particular iteration
of the training workload independent of whether the selec-
tive update of the at least one partial-neuron weight corre-
sponding to a prior iteration of the training workload has
occurred.

[0189] EC145) The system of EC143, wherein the system
is enabled to initiate a forward pass of a particular iteration
of the training workload independent of whether the delta
pass of a prior iteration of the training workload has begun.
[0190] EC146) The system of EC143, wherein at least one
compute engine is enabled to perform at least a portion of a
forward pass for a subsequent iteration of the training
workload after performing at least a portion of a forward
pass for a prior iteration of the training workload and before
performing a portion of the selective update of the at least
one partial-neuron weight corresponding to the prior itera-
tion of the training workload.

[0191] EC147) The system of EC143, wherein the system
is enabled to perform the delta pass and the chain pass for
each input sample based at least in part on activations that
are recomputed based at least in part on a first partial-neuron
weight.

[0192] EC148) The system of EC147, wherein the first
partial-neuron weight is the partial-neuron weight produced
by the most recent selective update.

[0193] EC145b) The system of EC145, wherein the
recomputed activations need not be stored between compu-
tations, thereby decreasing the total memory required for a
given system training configuration.

[0194] EC145¢) The system of EC139, EC140, EC141, or
EC142, wherein concurrent layer training enables achieving
a predetermined accuracy goal at a faster convergence rate,
thereby decreasing total training time required for a given
system training configuration.

[0195] EC145d) The system of EC139, EC140, EC141, or
EC142, wherein concurrent layer training enables increased
accuracy for a given total training time and system training
configuration.

[0196] EC149) The system of EC143, wherein each com-
pute element is enabled to perform portions of a delta pass
and portions of a chain pass for an input sample based at
least in part on activations that are recomputed based at least
in part on a first partial-neuron weight.

[0197] ECI150) The system of EC149, wherein the first
partial-neuron weight is the partial-neuron weight produced
by the most recent selective update.

[0198] EC200) A method comprising:

[0199] in each of a fabric of processor elements, selec-
tively communicating fabric packets with others of the
processor elements, each processor element comprising
a fabric router and a compute engine enabled to per-
form dataflow-based and instruction-based processing;
and

[0200] in each compute engine, selectively performing
the processing in accordance with a virtual channel
specifier and a task specifier of each fabric packet the
compute engine receives.

[0201] EC200b) A method comprising:

[0202] in each of a fabric of processor elements, selec-
tively communicating fabric packets with others of the
processor elements, each processor element comprising
a fabric router and a compute engine; and

Nov. 1, 2018

[0203] in each compute engine, selectively performing
datatlow processing and instruction processing respec-
tively in accordance with a dataflow field and an
instruction field of each fabric packet the compute
engine receives.

[0204] EC200c) The method of EC200, wherein the pro-
cessing is in accordance with a dataflow graph.

[0205] EC200d) The method of EC200, further compris-
ing executing a workload comprising predominantly data-
flow-based processing with minimal instruction-based pro-
cessing.

[0206] EC200e) The method of EC200d, wherein per-
forming the method implements a Long Short Term Memory
(LSTM) neural network model.

[0207] EC200f) The method of EC200, further comprising
executing a workload comprising predominantly instruc-
tion-based processing with minimal dataflow-based process-
ing.

[0208] EC200g) The method of EC200, wherein the fabric
of processor elements is implemented at least in part using
wafer-scale integration.

[0209] EC200h) The method of EC200, wherein the fabric
of processor elements is implemented at least in part using
VLSI fabrication.

[0210] EC201) The method of EC200, wherein the virtual
channel specifier selects independent respective routing
paths in the fabric.

[0211] EC201b) The method of EC200, wherein the vir-
tual channel specifier selects routing paths in the fabric to
perform multicast.

[0212] EC201c) The method of EC200, wherein the vir-
tual channel specifier selects routing paths in the fabric to
perform load splitting.

[0213] EC202) The method of EC200, wherein the task
specifier selects one or more operations to perform.

[0214] EC203) The method of EC200, wherein the fabric
comprises a 2D array of the processor elements.

[0215] EC203b) The method of EC200, wherein the fabric
comprises a processor element interconnection topology
selected from the group consisting of fully connected, star,
ring, array, mesh, hypercube, torus, and tree.

[0216] EC203c) The method of EC200, wherein the fabric
comprises a processor element interconnection topology
dimension selected from the group consisting of 1D, 2D, 3D,
and a dimension greater than 3D.

[0217] EC204) The method of EC200, wherein perform-
ing the method enables executing machine learning work-
loads.

[0218] EC205) The method of EC200, wherein perform-
ing the method enables training an inference application.
[0219] EC205b) The method of EC200, wherein perform-
ing the method performs an inference application.

[0220] EC206) The method of EC200, wherein perform-
ing the method implements a deep neural network trained to
perform object classification and/or detection.

[0221] EC207) The method of EC200, wherein perform-
ing the method implements a deep neural network trained to
perform an inference application selected from the group
consisting of text translation, optical character recognition,
image classification, facial recognition, scene recognition
for a self-driving car, speech recognition, data analysis for
high energy physics, and drug discovery.

[0222] EC208) The method of EC200, wherein the fabric
is organized as a plurality of periphery processor elements

US 2018/0314941 Al

and a plurality of interior processor elements, and each of
the interior processor elements is coupled in at least four
logical directions respectively to at least four others of the
plurality of processor elements.
[0223] EC209) The method of EC200, wherein each com-
pute engine comprises a memory, a data path, and a hybrid
dataflow and instruction execution controller.
[0224] EC210) The method of EC209, wherein each com-
pute engine operates in accordance with a multi-stage com-
pute engine pipeline having a plurality of compute engine
pipeline stages.
[0225] EC211) The method of EC209, wherein the
instruction execution controller comprises an instruction
sequencer implemented using one or more of microcode,
PLAs, one or more counters, and a gate-level state machine.
[0226] EC212) The method of EC209, wherein each com-
pute engine further comprises a register file, an instruction
decoder, an instruction cache, and a data cache.
[0227] EC212b) The method of EC209, wherein each
compute engine further comprises a register file, an instruc-
tion decoder, an instruction buffer, and a data buffer.
[0228] EC213) The method of EC200, wherein:

[0229] each compute engine is configured to perform a

predefined set of basic operations in response to receiv-

ing a corresponding basic instruction selected from a

predefined native instruction set of codes; and further

comprising
[0230] processing a training workload comprising

[0231] a first set of machine codes selected from the
native instruction set for performing a mapping of at
least a part of a neuron onto the compute engine of
the processor element, the mapping comprising man-
aging at least one partial-neuron weight,

[0232] a second set of machine codes selected from
the native instruction set for performing a forward
pass to propagate activations in a forward logical
direction based at least in part on the at least one
partial-neuron weight, the forward pass initiated
responsive to an input sample,

[0233] a third set of machine codes selected from the
native instruction set for performing a delta pass in
a backward logical direction to generate deltas, the
delta pass initiated responsive to completion of the
forward pass,

[0234] a fourth set of machine codes selected from
the native instruction set for performing a chain pass
to calculate gradients based on the deltas, and

[0235] a fifth set of machine codes selected from the
native instruction set for performing a selective
update of the at least one partial-neuron weight in
accordance with a predetermined learning rule and
based at least in part on the deltas; and

[0236] wherein each compute engine comprises storage

for the at least one partial-neuron weight.

[0237] EC213a) The method of EC213, wherein each
basic instruction is performed in accordance with the task
specifier of a respective fabric packet of the fabric packets.
[0238] EC213b) The method of EC213, wherein the fabric
comprises a 2D array of the processor elements comprising
a first, second, third, and fourth physical directions, the first
and second physical directions being collinear and opposite,
the third and fourth physical directions being collinear and
opposite, the first and third physical directions being
orthogonal, and the forward logical direction is in the first

Nov. 1, 2018

physical direction and the backward logical direction is in
the second physical direction.
[0239] EC213c) The method of EC213, wherein the train-
ing workload further comprises a sixth set of machine codes
selected from the native instruction set for performing a
nonlinear activation function.

[0240] EC213d) The method of EC213c, wherein the
nonlinear activation function is selected from the group
consisting of sigmoid, tan h, and ReL.U.

[0241] EC214) The method of EC213, wherein the map-
ping is in accordance with initializing the fabric to imple-
ment a partitioning of a neural network into a plurality of
layers, the neuron is a first neuron of a plurality of neurons
of the neural network, the first neuron is comprised in a first
layer of the plurality of layers, and each of the plurality of
neurons is mapped in a distributed manner across a plurality
of the processor elements of the fabric.

[0242] EC215) The method of EC214, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer in the same
amount of time.

[0243] EC215b) The method of EC214, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer within a same
predetermined amount of time.

[0244] EC215¢) The method of EC214, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer within a same
time period determined in real time.

[0245] EC216) The method of EC214, wherein the plu-
rality of layers operates as a logical fabric pipeline com-
prising logical fabric pipeline stages, each logical fabric
pipeline stage comprising completion of all of the passes for
each layer, the completion for each layer taking a time step
comprising the same amount of time.

[0246] EC216b) The method of EC214, wherein each of
the plurality of layers operates as a logical fabric pipeline
stage of a respective logical fabric pipeline of each of the
passes, the completion for each layer taking a time step
comprising the same amount of time.

[0247] EC217) The method of EC214, wherein as each
input sample of a training set streams through at least a first
plurality of the processor elements across the plurality of
layers, the neuron weights are selectively updated in the first
plurality of the processor elements across the plurality of
layers.

[0248] EC217b) The method of EC216, wherein as each
input sample of a training set streams through at least a first
plurality of the processor elements across the plurality of
layers, the neuron weights are selectively updated in the first
plurality of the processor elements across the plurality of
layers, and the streaming and updating is ongoing for each
time step over a plurality of time steps.

[0249] EC218) The method of EC216, wherein at least one
of the processor elements comprises a digital clock, and the
time step is an integral multiple of a clock-cycle of the
digital clock.

[0250] EC218b) The method of EC216, wherein at least
one of the processor elements comprises a digital clock, and
wherein the time step is a variable amount of time.

[0251] EC218c) The method of EC218 or EC218b,
wherein the time step is determined in real-time.

US 2018/0314941 Al

[0252] EC219) The method of EC214, further comprising:

[0253] operating each compute engine in accordance
with a multi-stage compute engine pipeline having a
plurality of compute engine pipeline stages, a compute
engine machine cycle comprising the time to complete
each compute engine pipeline stage, a compute engine
pipeline cycle comprising the time to complete the
plurality of compute engine pipeline stages;

[0254] wherein the compute engine machine cycle com-
prises a first multiple of a clock-cycle of a digital clock;

[0255] wherein the plurality of layers operates as a
logical fabric pipeline comprising logical fabric pipe-
line stages, each logical fabric pipeline stage compris-
ing completion of all of the passes for each layer, a time
step comprising the time to complete each logical
fabric pipeline stage; and

[0256] wherein the time step comprises a second mul-
tiple of the compute engine pipeline cycle.

[0257] EC220) The method of EC219, wherein the first
multiple is one.
[0258] EC221) The method of EC219, wherein the second

multiple is in the hundreds to thousands.

[0259] EC222) The method of EC216, further comprising,
for each time step over a plurality of time steps while
forward propagation of activations are ongoing, selectively
updating the at least one partial-neuron weight within a first
plurality of the processor elements in response to changes in
backward propagating data within the first plurality of the
processor elements.

[0260] EC223) The method of EC216, further comprising
selectively updating the at least one partial-neuron weight
each time step over a plurality of time steps.

[0261] EC223b) The method of EC217, EC217b, EC222,
or EC223, wherein the selectively updating is in accordance
with a continuous propagation gradient descent process.
[0262] EC224) The method of EC214, wherein the neural
network comprises over a thousand layers.

[0263] EC225) The method of EC214, wherein the plu-
rality of neurons comprises billions of neurons.

[0264] EC225b) The method of EC214, wherein the plu-
rality of neurons comprises millions of neurons.

[0265] EC225c¢) The method of EC214, wherein the neural
network comprises at least 10 weights per neuron for at least
some of the plurality of neurons.

[0266] EC225d) The method of EC214, wherein the neu-
ral network comprises at least 1000 weights per neuron for
at least some of the plurality of neurons.

[0267] EC226) The method of EC214, wherein the neural
network comprises billions of weights per layer.

[0268] EC226b) The method of EC214, wherein the neu-
ral network comprises millions of weights per layer.
[0269] EC227) The method of EC214, further comprising,
for each layer of the neural network, weighting incoming
activations to create partial sums that are accumulated to
generate output activations for the layer, and wherein the
accumulated weighted partial sums represent the neurons
and associated synapses of the neural network.

[0270] EC227b) The method of EC227, wherein each
weight corresponds to a synapse, each partial sum corre-
sponds to a stimulus, the accumulated weighted partial sums
correspond to a total stimulus, and each output activation for
the layer corresponds to a neuron output.

15

Nov. 1, 2018

[0271] EC228) The method of EC213, further comprising
performing an iteration of the training workload for each of
a plurality of input samples collectively comprising a train-
ing set.

[0272] EC229) The method of EC228, wherein the pre-
determined learning rule specifies that the at least one
partial-neuron weight is updated after the completion of all
the passes for the entire training set.

[0273] EC229b) The method of EC229, wherein the pre-
determined learning rule is in accordance with a stochastic
gradient descent process.

[0274] EC229c¢) The method of EC229, wherein the pre-
determined learning rule is in accordance with a mini-batch
gradient descent process.

[0275] EC229d) The method of EC229, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.

[0276] EC230) The method of EC228, further comprising
partitioning the training set into a plurality of so-called
mini-batches and the predetermined learning rule specifies
that the at least one partial-neuron weight is updated after the
completion of all the passes for the input samples comprised
in each of the mini-batches.

[0277] EC231) The method of EC228, further comprising
partitioning the training set into a plurality of so-called
mini-batches and the predetermined learning rule specifies
that the at least one partial-neuron weight is updated after the
completion of all the passes for each input sample of each of
the mini-batches.

[0278] EC231b) The method of EC231, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.

[0279] EC232) The method of EC231, wherein the for-
ward pass incorporates weight updates within a first plurality
of the processor elements while the mini-batch learning is
ongoing within the first plurality of the processor elements.
[0280] EC233) The method of EC213, wherein the storage
is comprised in a memory local to the compute engine.
[0281] EC233b) The method of C213, wherein the storage
is comprised in the compute engine.

[0282] EC233b) The method of C213, wherein the storage
is a respective memory attached to each compute engine.
[0283] EC234) The method of EC213, wherein the storage
is enabled to store a 2D matrix data structure.

[0284] EC234b) The method of C213, wherein the storage
is enabled to store a multidimensional data structure.
[0285] EC234c) The method of C213, wherein the storage
is enabled to store a tensor data structure comprising a
dimension selected from the group consisting of 2D, 3D, 4D,
5D, and 6D.

[0286] EC235) The method of EC213, wherein each com-
pute engine further comprises storage for gradient accumu-
lation, forward partial sums, delta partial sums, and forward
pass activations.

[0287] EC236) The method of EC214, wherein data
propagates to a logical end of the neural network during the
forward pass and circulates back in a reverse logical direc-
tion during the delta and chain passes.

[0288] EC237) The method of EC213, wherein the for-
ward pass saves the activations for use by the delta and chain
passes.

[0289] EC238) The method of EC213, further comprising
time sharing each processor element across the forward,
delta and chain passes.

US 2018/0314941 Al

[0290] EC239) The method of EC228, further comprising,
for each input sample, selectively updating the at least one
partial-neuron weight in accordance with the predetermined
learning rule responsive to completion of the forward pass,
the delta pass, and the chain pass corresponding to the input
sample.
[0291] EC239b) The method of EC239, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.
[0292] EC240) The method of EC239, further comprising,
for each forward pass, selectively using weight information
provided by the most recent selective update of the at least
one partial-neuron weight.
[0293] EC241) The method of EC240, further comprising
initiating a forward pass of a particular iteration of the
training workload independent of whether the selective
update of the at least one partial-neuron weight correspond-
ing to a prior iteration of the training workload has occurred.
[0294] EC242) The method of EC240, further comprising
selectively initiating a forward pass of a particular iteration
of the training workload independent of whether the delta
pass of a prior iteration of the training workload has begun.
[0295] EC243) The method of EC240, further comprising,
in at least one of the compute engines, performing at least a
portion of a forward pass for a subsequent iteration of the
training workload after performing at least a portion of a
forward pass for a prior iteration of the training workload
and before performing a portion of the selective update of
the at least one partial-neuron weight corresponding to the
prior iteration of the training workload.
[0296] EC244) The method of EC240, further comprising
selectively performing the delta pass and the chain pass for
each input sample based at least in part on activations that
are recomputed based at least in part on a first partial-neuron
weight.
[0297] EC245) The method of EC244, wherein the first
partial-neuron weight is the partial-neuron weight produced
by the most recent selective update.
[0298] EC245b) The method of EC245, wherein the
recomputed activations need not be stored between compu-
tations, thereby decreasing the total memory required for a
given system training configuration.
[0299] EC245c¢) The method of EC239, EC240, EC241, or
EC242, wherein concurrent layer training enables achieving
a predetermined accuracy goal at a faster convergence rate,
thereby decreasing total training time required for a given
system training configuration.
[0300] EC245d) The method of EC239, EC240, EC241, or
EC242, wherein concurrent layer training enables increased
accuracy for a given total training time and system training
configuration.
[0301] EC246) The method of EC240, further comprising,
in each compute element, selectively performing portions of
a delta pass and portions of a chain pass for an input sample
based at least in part on activations that are recomputed
based at least in part on a first partial-neuron weight.
[0302] EC247) The method of EC246, wherein the first
partial-neuron weight is the partial-neuron weight produced
by the most recent selective update.
[0303] EC300) A system comprising:
[0304] in each of a fabric of processor elements, means
for selectively communicating fabric packets with oth-
ers of the processor elements, each processor element

Nov. 1, 2018

comprising a fabric router and a compute engine
enabled to perform datatlow-based and instruction-
based processing; and

[0305] in each compute engine, means for selectively
performing the processing in accordance with a virtual
channel specifier and a task specifier of each fabric
packet the compute engine receives.

[0306] EC300b) A system comprising:

[0307] in each of a fabric of processor elements, means
for selectively communicating fabric packets with oth-
ers of the processor elements, each processor element
comprising a fabric router and a compute engine; and

[0308] in each compute engine, means for selectively
performing dataflow processing and instruction pro-
cessing respectively in accordance with a datatlow field
and an instruction field of each fabric packet the
compute engine receives.

[0309] EC300c) The system of EC300, wherein the pro-
cessing is in accordance with a dataflow graph.

[0310] EC300d) The system of EC300, further comprising
means for executing a workload comprising predominantly
dataflow-based processing with minimal instruction-based
processing.

[0311] EC300e) The system of EC300d, wherein the sys-
tem implements a Long Short Term Memory (LSTM) neural
network model.

[0312] EC300f) The system of EC300, further comprising
means for executing a workload comprising predominantly
instruction-based processing with minimal datatlow-based
processing.

[0313] EC300g) The system of EC300, wherein the sys-
tem is implemented at least in part using wafer-scale inte-
gration.

[0314] EC300h) The system of EC300, wherein the fabric
of processor elements is implemented at least in part using
VLSI fabrication.

[0315] EC301) The system of EC300, wherein the virtual
channel specifier selects independent respective routing
paths in the fabric.

[0316] EC301b) The system of EC300, wherein the virtual
channel specifier selects routing paths in the fabric to
perform multicast.

[0317] EC301c) The system of EC300, wherein the virtual
channel specifier selects routing paths in the fabric to
perform load splitting.

[0318] EC302) The system of EC300, wherein the task
specifier selects one or more operations to perform.

[0319] EC303) The system of EC300, wherein the fabric
comprises a 2D array of the processor elements.

[0320] EC303b) The system of EC300, wherein the fabric
comprises a processor element interconnection topology
selected from the group consisting of fully connected, star,
ring, array, mesh, hypercube, torus, and tree.

[0321] EC303c¢) The system of EC300, wherein the fabric
comprises a processor element interconnection topology
dimension selected from the group consisting of 1D, 2D, 3D,
and a dimension greater than 3D.

[0322] EC304) The system of EC300, wherein the system
is enabled to execute machine learning workloads.

[0323] EC305) The system of EC300, wherein the system
is trained to perform an inference application.

[0324] EC305b) The system of EC300, wherein the sys-
tem performs an inference application.

US 2018/0314941 Al

[0325] EC306) The system of EC300, wherein the system
implements a deep neural network trained to perform object
classification and/or detection.
[0326] EC307) The system of EC300, wherein the system
implements a deep neural network trained to perform an
inference application selected from the group consisting of
text translation, optical character recognition, image classi-
fication, facial recognition, scene recognition for a self-
driving car, speech recognition, data analysis for high energy
physics, and drug discovery.
[0327] EC308) The system of EC300, wherein the fabric
is organized as a plurality of periphery processor elements
and a plurality of interior processor elements, and each of
the interior processor elements is coupled in at least four
logical directions respectively to at least four others of the
plurality of processor elements.
[0328] EC309) The system of EC300, wherein each com-
pute engine comprises a memory, a data path, and a hybrid
dataflow and instruction execution controller.
[0329] EC310) The system of EC309, wherein each com-
pute engine operates in accordance with a multi-stage com-
pute engine pipeline having a plurality of compute engine
pipeline stages.
[0330] EC311) The system of EC309, wherein the instruc-
tion execution controller comprises an instruction sequencer
implemented using one or more of microcode, PLLAs, one or
more counters, and a gate-level state machine.
[0331] EC312) The system of EC309, wherein each com-
pute engine further comprises a register file, an instruction
decoder, an instruction cache, and a data cache.
[0332] EC312b) The system of EC309, wherein each
compute engine further comprises a register file, an instruc-
tion decoder, an instruction buffer, and a data buffer.
[0333] EC313) The system of EC300, wherein:

[0334] each compute engine is configured to perform a

predefined set of basic operations in response to receiv-

ing a corresponding basic instruction selected from a

predefined native instruction set of codes; and further

comprising
[0335] a training workload comprising

[0336] a first set of machine codes selected from the
native instruction set for performing a mapping of at
least a part of a neuron onto the compute engine of
the processor element, the mapping comprising man-
aging at least one partial-neuron weight,

[0337] a second set of machine codes selected from
the native instruction set for performing a forward
pass to propagate activations in a forward logical
direction based at least in part on the at least one
partial-neuron weight, the forward pass initiated
responsive to an input sample,

[0338] a third set of machine codes selected from the
native instruction set for performing a delta pass in
a backward logical direction to generate deltas, the
delta pass initiated responsive to completion of the
forward pass,

[0339] a fourth set of machine codes selected from
the native instruction set for performing a chain pass
to calculate gradients based on the deltas, and

[0340] a fifth set of machine codes selected from the
native instruction set for performing a selective
update of the at least one partial-neuron weight in
accordance with a predetermined learning rule and
based at least in part on the deltas; and

Nov. 1, 2018

[0341] wherein each compute engine comprises storage
for the at least one partial-neuron weight.

[0342] EC313a) The system of EC313, wherein each basic
instruction is performed in accordance with the task specifier
of a respective fabric packet of the fabric packets.
[0343] EC313b) The system of EC313, wherein the fabric
comprises a 2D array of the processor elements comprising
a first, second, third, and fourth physical directions, the first
and second physical directions being collinear and opposite,
the third and fourth physical directions being collinear and
opposite, the first and third physical directions being
orthogonal, and the forward logical direction is in the first
physical direction and the backward logical direction is in
the second physical direction.
[0344] EC313c) The system of EC313, wherein the train-
ing workload further comprises a sixth set of machine codes
selected from the native instruction set for performing a
nonlinear activation function.
[0345] EC313d) The system of EC313¢, wherein the non-
linear activation function is selected from the group con-
sisting of sigmoid, tan h, and ReL.U.
[0346] EC314) The system of EC313, wherein the map-
ping is in accordance with initializing the fabric to imple-
ment a partitioning of a neural network into a plurality of
layers, the neuron is a first neuron of a plurality of neurons
of the neural network, the first neuron is comprised in a first
layer of the plurality of layers, and each of the plurality of
neurons is mapped in a distributed manner across a plurality
of the processor elements of the fabric.
[0347] EC315) The system of EC314, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer in the same
amount of time.
[0348] EC315b) The system of EC314, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer within a same
predetermined amount of time.
[0349] EC315¢) The system of EC314, wherein the map-
ping is in accordance with each input sample of a training set
completing all of the passes for each layer within a same
time period determined in real time.
[0350] EC316) The system of EC314, wherein the plural-
ity of layers operates as a logical fabric pipeline comprising
logical fabric pipeline stages, each logical fabric pipeline
stage comprising completion of all of the passes for each
layer, the completion for each layer taking a time step
comprising the same amount of time.
[0351] EC316b) The system of EC314, wherein each of
the plurality of layers operates as a logical fabric pipeline
stage of a respective logical fabric pipeline of each of the
passes, the completion for each layer taking a time step
comprising the same amount of time.
[0352] EC317) The system of EC314, wherein as each
input sample of a training set streams through at least a first
plurality of the processor elements across the plurality of
layers, the neuron weights are selectively updated in the first
plurality of the processor elements across the plurality of
layers.
[0353] EC317b) The system of EC316, wherein as each
input sample of a training set streams through at least a first
plurality of the processor elements across the plurality of
layers, the neuron weights are selectively updated in the first
plurality of the processor elements across the plurality of

US 2018/0314941 Al

layers, and the streaming and updating is ongoing for each
time step over a plurality of time steps.
[0354] EC318) The system of EC316, further comprising
a digital clock, and wherein the time step is an integral
multiple of a clock-cycle of the digital clock.
[0355] EC318b) The system of EC316, further comprising
a digital clock, and wherein the time step is a variable
amount of time.
[0356] EC318c) The system of EC318 or EC318b,
wherein the time step is determined in real-time.
[0357] EC319) The system of EC314, further comprising:
[0358] means for operating each compute engine in
accordance with a multi-stage compute engine pipeline
having a plurality of compute engine pipeline stages, a
compute engine machine cycle comprising the time to
complete each compute engine pipeline stage, a com-
pute engine pipeline cycle comprising the time to
complete the plurality of compute engine pipeline
stages;
[0359] wherein the compute engine machine cycle com-
prises a first multiple of a clock-cycle of a digital clock;
[0360] wherein the plurality of layers operates as a
logical fabric pipeline comprising logical fabric pipe-
line stages, each logical fabric pipeline stage compris-
ing completion of all of the passes for each layer, a time
step comprising the time to complete each logical
fabric pipeline stage; and
[0361] wherein the time step comprises a second mul-
tiple of the compute engine pipeline cycle.

[0362] EC320) The system of EC319, wherein the first
multiple is one.
[0363] EC321) The system of EC319, wherein the second

multiple is in the hundreds to thousands.

[0364] EC322) The system of EC316, further comprising
means for selectively updating the at least one partial-neuron
weight within a first plurality of the processor elements in
response to changes in backward propagating data within the
first plurality of the processor elements for each time step
over a plurality of time steps while forward propagation of
activations are ongoing.

[0365] EC323) The system of EC316, further comprising
means for selectively updating the at least one partial-neuron
weight each time step over a plurality of time steps.
[0366] EC323b) The system of EC317, EC317b, EC322,
or EC323, wherein the selectively updating is in accordance
with a continuous propagation gradient descent process.
[0367] EC324) The system of EC314, wherein the neural
network comprises over a thousand layers.

[0368] EC325) The system of EC314, wherein the plural-
ity of neurons comprises billions of neurons.

[0369] EC325b) The system of EC314, wherein the plu-
rality of neurons comprises millions of neurons.

[0370] EC325c¢) The system of EC314, wherein the neural
network comprises at least 10 weights per neuron for at least
some of the plurality of neurons.

[0371] EC325d) The system of EC314, wherein the neural
network comprises at least 1000 weights per neuron for at
least some of the plurality of neurons.

[0372] EC326) The system of EC314, wherein the neural
network comprises billions of weights per layer.

[0373] EC326b) The system of EC314, wherein the neural
network comprises millions of weights per layer.

[0374] EC327) The system of EC314, further comprising,
for each layer of the neural network, means for weighting

Nov. 1, 2018

incoming activations to create partial sums that are accu-
mulated to generate output activations for the layer, and
wherein the accumulated weighted partial sums represent
the neurons and associated synapses of the neural network.
[0375] EC327b) The system of EC327, wherein each
weight corresponds to a synapse, each partial sum corre-
sponds to a stimulus, the accumulated weighted partial sums
correspond to a total stimulus, and each output activation for
the layer corresponds to a neuron output.

[0376] EC328) The system of EC313, further comprising
means for performing an iteration of the training workload
for each of a plurality of input samples collectively com-
prising a training set.

[0377] EC329) The system of EC328, wherein the prede-
termined learning rule specifies that the at least one partial-
neuron weight is updated after the completion of all the
passes for the entire training set.

[0378] EC329b) The system of EC329, wherein the pre-
determined learning rule is in accordance with a stochastic
gradient descent process.

[0379] EC329c) The system of EC329, wherein the pre-
determined learning rule is in accordance with a mini-batch
gradient descent process.

[0380] EC329d) The system of EC329, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.

[0381] EC330) The system of EC328, further comprising
means for partitioning the training set into a plurality of
so-called mini-batches and the predetermined learning rule
specifies that the at least one partial-neuron weight is
updated after the completion of all the passes for the input
samples comprised in each of the mini-batches.

[0382] EC331) The system of EC328, further means for
comprising partitioning the training set into a plurality of
so-called mini-batches and the predetermined learning rule
specifies that the at least one partial-neuron weight is
updated after the completion of all the passes for each input
sample of each of the mini-batches.

[0383] EC331b) The system of EC331, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.

[0384] EC332) The system of EC331, wherein the forward
pass incorporates weight updates within a first plurality of
the processor elements while the mini-batch learning is
ongoing within the first plurality of the processor elements.
[0385] EC333) The system of EC313, wherein the storage
is comprised in a memory local to the compute engine.
[0386] EC333b) The system of EC313, wherein the stor-
age is comprised in the compute engine.

[0387] EC333b) The system of EC313, wherein the stor-
age is a respective memory attached to each compute engine.
[0388] EC334) The system of EC313, wherein the storage
is enabled to store a 2D matrix data structure.

[0389] EC334b) The system of EC313, wherein the stor-
age is enabled to store a multidimensional data structure.
[0390] EC334c) The system of EC313, wherein the stor-
age is enabled to store a tensor data structure comprising a
dimension selected from the group consisting of 2D, 3D, 4D,
5D, and 6D.

[0391] EC335) The system of EC313, wherein each com-
pute engine further comprises storage for gradient accumu-
lation, forward partial sums, delta partial sums, and forward
pass activations.

US 2018/0314941 Al

[0392] EC336) The system of EC314, wherein data propa-
gates to a logical end of the neural network during the
forward pass and circulates back in a reverse logical direc-
tion during the delta and chain passes.

[0393] EC337) The system of EC313, wherein the forward
pass saves the activations for use by the delta and chain
passes.

[0394] EC338) The system of EC313, further comprising
means for time sharing each processor element across the
forward, delta and chain passes.

[0395] EC339) The system of EC328, further comprising,
for each input sample, means for selectively updating the at
least one partial-neuron weight in accordance with the
predetermined learning rule responsive to completion of the
forward pass, the delta pass, and the chain pass correspond-
ing to the input sample.

[0396] EC339b) The system of EC339, wherein the pre-
determined learning rule is in accordance with a continuous
propagation gradient descent process.

[0397] EC340) The system of EC339, further comprising
means for selectively using weight information provided by
the most recent selective update of the at least one partial-
neuron weight for each forward pass.

[0398] EC341) The system of EC340, further comprising
means for initiating a forward pass of a particular iteration
of the training workload independent of whether the selec-
tive update of the at least one partial-neuron weight corre-
sponding to a prior iteration of the training workload has
occurred.

[0399] EC342) The system of EC340, further comprising
means for selectively initiating a forward pass of a particular
iteration of the training workload independent of whether
the delta pass of a prior iteration of the training workload has
begun.

[0400] EC343) The system of EC340, further comprising,
in at least one of the compute engines, means for performing
at least a portion of a forward pass for a subsequent iteration
of the training workload after performing at least a portion
of a forward pass for a prior iteration of the training
workload and before performing a portion of the selective
update of the at least one partial-neuron weight correspond-
ing to the prior iteration of the training workload.

[0401] EC344) The system of EC340, further comprising
means for selectively performing the delta pass and the
chain pass for each input sample based at least in part on
activations that are recomputed based at least in part on a
first partial-neuron weight.

[0402] EC345) The system of EC344, wherein the first
partial-neuron weight is the partial-neuron weight produced
by the most recent selective update.

[0403] EC345b) The system of EC345, wherein the
recomputed activations need not be stored between compu-
tations, thereby decreasing the total memory required for a
given system training configuration.

[0404] EC345c¢) The system of EC339, EC340, EC341, or
EC342, wherein concurrent layer training enables achieving
a predetermined accuracy goal at a faster convergence rate,
thereby decreasing total training time required for a given
system training configuration.

[0405] EC345d) The system of EC339, EC340, EC341, or
EC342, wherein concurrent layer training enables increased
accuracy for a given total training time and system training
configuration.

Nov. 1, 2018

[0406] EC346) The system of EC340, further comprising,
in each compute element, means for selectively performing
portions of a delta pass and portions of a chain pass for an
input sample based at least in part on activations that are
recomputed based at least in part on a first partial-neuron
weight.

[0407] EC347) The system of EC346, wherein the first
partial-neuron weight is the partial-neuron weight produced
by the most recent selective update.

[0408] EC400) A method comprising:

[0409] training a neural network comprising a plurality
of ordered, connected layers;

[0410] wherein the order identifies for each respective
layer which others of the layers are prior to the respec-
tive layer and which others of the layers are subsequent
to the respective layer; wherein each layer comprises
one or more neurons, each neuron comprising weights
and connected to at least one of at least one prior
neuron of a prior layer, and at least one subsequent
neuron of a subsequent layer; and

[0411] wherein each neuron is implemented by one or
more processing elements, each processing element
comprising
[0412] atleast one coupling to a fabric the processing

element being enabled to communicate via the fabric
via a plurality of virtual channels,
[0413] a first memory enabled to store instructions
corresponding to at least computations of the neuron,
[0414] a second memory enabled to store the
weights, and
[0415] hardware execution resources enabled to
execute instructions from the respective first
memory and access data from the respective second
memory.
[0416] ECA401) The method of EC400, wherein the train-
ing comprises:

[0417] based on a first activation and first weights,
determining a second activation;

[0418] based on a first delta and the first weights,
determining and saving second weights, based on a
third activation and selected weights, determining a
fourth activation, wherein the selected weights are
dynamically selected from the first weights and the
second weights; and

[0419] based on a second delta and the selected weights,
determining and saving third weights.

[0420] ECA402) The method of EC401, wherein the deter-
mining the second activation comprises:

[0421] receiving the first activation via the fabric from
the at least one prior neuron;

[0422] computing the second activation based at least in
part on the first activation and first weights by at least
executing first instructions stored in the first memory
and accessing the first weights in the second memory;
and

[0423] selectively transmitting the second activation via
the fabric to the at least one subsequent neuron.

[0424] ECA403) The method of EC401, wherein the deter-
mining and saving the second weights comprises:

[0425] receiving the first delta that is partially based on
the second activation via the fabric from the at least one
subsequent neuron;

US 2018/0314941 Al

[0426] computing a first gradient based at least in part
on the first delta and the second activation by at least
executing second instructions stored in the first
memory;

[0427] computing the second weights based at least in
part on the first gradient, a learning rule, and the first
weights by at least executing third instructions stored in
the first memory and accessing the first weights in the
second memory; and

[0428] storing the second weights in the second
memory.

[0429] EC404) The method of EC402, wherein the deter-
mining the fourth activation comprises:

[0430] receiving the third activation via the fabric from
the at least one prior neuron;

[0431] computing the fourth activation based at least in
part on the third activation and the selected weights by
at least executing the first instructions and accessing the
selected weights in the second memory; and

[0432] selectively transmitting the fourth activation via
the fabric to the at least one subsequent neuron.

[0433] ECA405) The method of EC403, wherein the deter-
mining and saving third weights comprises:

[0434] receiving the second delta that is partially based
on the fourth activation via the fabric from the at least
one subsequent neuron;

[0435] computing a second gradient based at least in
part on a third delta and the fourth activation by at least
executing the second instructions stored in the first
memory;

[0436] computing the third weights based at least in part
on the second gradient, the learning rule and the
selected weights by at least executing the third instruc-
tions stored and accessing the selected weights in the
second memory; and

[0437] storing the third weights in the second memory.

[0438] EC406) The method of EC404, wherein the deter-
mining and saving the second weights comprises:

[0439] receiving the first delta that is partially based on
the second activation via the fabric from the at least one
subsequent neuron;

[0440] computing a first gradient based at least in part
on the first delta and the second activation by at least
executing second instructions stored in the first
memory;

[0441] computing the second weights based at least in
part on the first gradient, a learning rule, and the first
weights by at least executing third instructions stored in
the first memory and accessing the first weights in the
second memory; and

[0442] storing the second weights in the second
memory.

[0443] EC407) The method of EC406, wherein the deter-
mining and saving third weights comprises:

[0444] receiving the second delta that is partially based
on the fourth activation via the fabric from the at least
one subsequent neuron;

[0445] computing a second gradient based at least in
part on a third delta and the fourth activation by at least
executing the second instructions stored in the first
memory;

[0446] computing the third weights based at least in part
on the second gradient, the learning rule and the

Nov. 1, 2018

selected weights by at least executing the third instruc-

tions stored and accessing the selected weights in the

second memory; and

[0447] storing the third weights in the second memory.

[0448] EC408) The method of EC403, wherein the
selected weights are dynamically selected in accordance
with which of the first weights and the second weights was
stored most recently.
[0449] EC409) The method of EC401, wherein the deter-
mining the fourth activation is enabled to be performed after
the determining the second activation and before the deter-
mining and saving the second weights.
[0450] EC410) The method of EC404, wherein the selec-
tively transmitting the second activation and the fourth
activation is selectively based upon the respective values of
the second activation and fourth activation.
[0451] ECA411) The method of EC404, wherein the selec-
tively transmitting the second activation and the fourth
activation is selectively based upon the respective absolute
values of the second activation and the fourth activation
exceeding respective first and second thresholds.
[0452] EC412) The method of EC400, wherein at least one
neuron is implemented by a plurality of processing ele-
ments.
[0453] EC413) The method of EC405, wherein the deter-
mining the fourth activation additionally comprises storing
the fourth activation in the second memory and the com-
puting the second gradient additionally comprises accessing
the fourth activation in the second memory.
[0454] EC414) The method of EC407, wherein the com-
puting the second gradient additionally comprises optionally
recomputing the fourth activation based at least in part upon
the selected weights.
[0455] ECA415) The method of EC407, wherein the com-
puting the first gradient additionally comprises optionally
recomputing the second activation based at least in part upon
the first weights.
[0456] EC416) The method of EC400, wherein each pro-
cessing element is enabled to perform dataflow-based pro-
cessing.
[0457] EC417) The method of EC400, wherein each pro-
cessing element comprises a fabric router.
[0458] EC418) The method of EC400, wherein each pro-
cessing element is enabled to selectively communicate fab-
ric packets with others of the processing elements.
[0459] EC419) The method of EC418, wherein each pro-
cessing element is enabled to perform processing in accor-
dance with a virtual channel specifier and a task specifier of
each fabric packet the processing element receives.

Selected Embodiment Details

[0460] Embodiments relating to neural network training
and inference, comprising deep learning accelerator hard-
ware elements and software elements are described herein
(see, e.g., FIGS. 1-4 and section “Deep Learning Accelerator
Overview”). The deep learning accelerator comprises hard-
ware processing elements (see, e.g., FIGS. 5-8 and section
“Processing Element: Compute Element and Router”). The
deep learning accelerator implements and/or uses various
techniques such as task initiation and closeout (see, e.g.,
FIGS. 9-12 and section “Tasks”), wavelet processing (see,
e.g., FIGS. 13A-15B and section “Wavelets”), task blocking
and unblocking (see, e.g., FIG. 16 and section “Block and
Unblock™), neuron smearing (see, e.g., FIGS. 17-20 and

US 2018/0314941 Al

section “Neuron Smearing”), fabric vectors, memory vec-
tors, and associated data structure descriptors (see, e.g.,
FIGS. 21A-24 and section “Vectors and Data Structure
Descriptors”), and instruction formats (see, e.g., FIGS. 25A-
25C and section “Instruction Formats™). The deep learning
accelerator is usable in a variety of scenarios (see, e.g.,
FIGS. 26A-27E and section “Deep Learning Accelerator
Example Uses” as well as FIGS. 28A-29 and section
“Example Workload Mapping”). The deep learning accel-
erator is contemplated in various embodiments (see, e.g.,
section “Other Embodiment Details”). The deep learning
accelerator is variously implementable (see, e.g., section
“Example Implementation Techniques”).

Deep Learning Accelerator Overview

[0461] FIG. 1 illustrates selected details of an embodiment
of a system for neural network training and inference, using
a deep learning accelerator, as Neural Network System 100.
Conceptually a neural network is trained using the deep
learning accelerator. One or more results of the training
(e.g., weights) are then used for inferences. For example, the
training comprises mapping neurons of the neural network
onto PEs of the deep learning accelerator. Then training data
is applied to the PEs. The PEs process the training data (e.g.,
via forward, delta, and chain passes) and update weights
until the training is complete. Then the weights are used for
inference.

[0462] Referring to the figure, Deep Learning Accelerator
120 comprises FPGAs 121 and PEs 122, enabled to com-
municate with each other, as illustrated by Coupling 123.
Placement Server(s) 150, (comprising CPUs 151 and CRM
152) is coupled to Connection Server(s) 160 (comprising
CPUs 161, CRM 162, and NICs 164) via LAN 111. Con-
nection Server(s) 160 is enabled to communicated with
FPGAs 121 via NICs 164 and 100 Gb 112. Autonomous
Vehicle 130 comprises CPUs 131, CRM 132, [Es 133, and
Camera 135. Cell Phone 140 comprises CPUs 141, CRM
142, IEs 143, and Camera 145.

[0463] Internet 180 provides for coupling (not explicitly
illustrated) between any combination of Placement Server(s)
150, Connection Server(s) 160, Autonomous Vehicle 130,
and/or Cell Phone 140, according to various embodiments
and/or usage scenarios.

[0464] Dashed-arrow Placements 113 conceptually indi-
cates placement information communicated from Placement
Server(s) 150 to PEs 122 (e.g., via LAN 111, Connection
Server(s) 160/NICs 164, 100 Gb 112, FPGAs 121, and
Coupling 123). In some embodiments and/or usage sce-
narios, Placements 113 is implicit, reflected in initialization
information provided to router elements of PEs 122 and
compute elements of PEs 122. In some embodiments and/or
usage scenarios, a portion of initialization information of
Placements 113 is provided to FPGAs 121 to configure
elements of FPGAs 121 for operation with PEs 122.
[0465] Dashed-arrow Weights 114 and dashed-arrow
Weights 115 conceptually indicate weight information com-
municated from PEs 122 respectively to Autonomous
Vehicle 130 and Cell Phone 140 (e.g., via Coupling 123,
FPGAs 121, 100 Gb 112, Connection Server(s) 160/NICs
164 and Internet 180). In some embodiments and/or usage
scenarios, the weight information is any one or more of all
or any portions of weight information as directly produced
as a result of training, a sub-sampling thereof, a quantization
thereof, and/or other transformations thereof.

Nov. 1, 2018

[0466] Deep Learning Accelerator 120 is enabled to per-
form training of neural networks, such as by computing
weights in response to placement information and training
information received via 100 Gb 112. Deep Learning Accel-
erator 120 is further enabled to, upon training completion,
provide the weights as results via 100 Gb 112. The weights
are then usable for inference, such as in Autonomous Vehicle
130 and/or in Cell Phone 140. PEs 122 comprises a rela-
tively large number of PEs (e.g., 10,000 or more) each
enabled to independently perform routing and computations
relating to training In some embodiments and/or usage
scenarios, PEs 122 is implemented via wafer-scale integra-
tion, such as respective pluralities of PEs implemented on
respective dice of a single wafer. FPGAs 121 is enabled to
interface PEs 122 to information provided via 100 Gb 112.
The interfacing includes conversion to/from modified Eth-
ernet frames from/to Wavelets, as communicated on Cou-
pling 123.

[0467] Placement Server(s) 150 is enabled to program-
matically determine placements of neurons (e.g., as indi-
cated by Placements 113) via one or more placement pro-
grams. The placement programs are stored in CRM 152 and
executed by CPUs 151. The placement information is com-
municated to Connection Server(s) 160 via LAN 111. An
example of a placement is a mapping of logical neurons of
a neural network onto physical memory and execution
hardware resources (e.g., PEs 122).

[0468] Connection Server(s) 160 is enabled to communi-
cate with FPGAs 121 and indirectly with PEs 122 via
FPGAs 121/Coupling 123, via NICs 164 and programmed
control thereof via driver programs In various embodiments
and/or usage scenarios, the communication comprises place-
ment information (e.g., from Placement Server(s) 150),
training information (e.g., from sources not illustrated but
accessible via Internet 180) and/or results of training (e.g.,
weights from PEs 122). The driver programs are stored in
CRM 162 and executed by CPUs 161.

[0469] Autonomous Vehicle 130 is enabled to use Weights
114 to perform inferences using IEs 133 as programmati-
cally controlled and/or assisted by CPUs 131 executing
programs stored in CRM 132. The inferences are optionally
and/or selectively performed using information obtained
from Camera 135. For example, a car is operable as an
autonomous vehicle. The car comprises cameras enabled to
provide video to an inference engine. The inference engine
is enabled to recognize objects related to navigating the car,
such as traffic lanes, obstructions, and other objects. The car
is enabled to navigate using results of the object recognition.
Any combination of the providing, the recognizing, and the
navigating are controlled and/or performed at least in part
via one or more CPUs executing programs stored in a CRM.
[0470] Cell Phone 140 is enabled to use Weights 115 to
perform inferences using [Es 143 as programmatically con-
trolled and/or assisted by CPUs 141 executing programs
stored in CRM 142. The inferences are optionally and/or
selectively performed using information obtained from
Camera 145. For example, the cell phone is operable to post
tagged photos on a social networking web site. The cell
phone comprises a camera enabled to provide image data to
an inference engine. The inference engine is enabled to tag
objects (e.g., by type such as ‘cat’, ‘dog’, and so forth, or by
name such as ‘Bob’, “Mary’, and so forth) in the image. The
cell phone is enabled to post the image and results of the
tagging to the social networking web site. Any combination

US 2018/0314941 Al

of the providing, the tagging, and the posting are controlled
and/or performed at least in part via one or more CPUs
executing programs stored in a CRM.

[0471] In various embodiments and/or usage scenarios, all
or any portions of weight information determined via a deep
learning accelerator is post-processed outside of the accel-
erator before inference usage. For example, all or any
portions of information represented by Weights 114 and/or
Weights 115, is processed in whole or in part by Placement
Server(s) 150 before inference usage by Autonomous
Vehicle 130 and/or Cell Phone 140. In various embodiments
and/or usage scenarios, an example of post-processing com-
prises quantizing Weights 114 and/or Weights 115 (e.g.,
converting from a floating-point number format to a fixed-
point number format). In various embodiments and/or usage
models, Camera 135 and Camera 145 are respective
examples of sensors that provide input to IEs 133 and IEs
143. Other examples of sensors are location sensors, orien-
tation sensors, magnetic sensors, light sensors, and pressure
sensors.

[0472] CPUs 151 comprises one or more CPUs that are
compatible with respective instruction set architectures.
CPUs 151 is enabled to fetch and execute instructions from
CRM 152 in accordance with the instruction set architec-
tures. CPUs 161 comprises one or more CPUs that are
compatible with respective instruction set architectures.
CPUs 161 is enabled to fetch and execute instructions from
CRM 162 in accordance with the instruction set architec-
tures. In some embodiments, at least one of the instruction
set architectures of CPUs 151 is compatible with at least one
of the instruction set architectures of CPUs 161.

[0473] CPUs 131 comprises one or more CPUs that are
compatible with respective instruction set architectures.
CPUs 131 is enabled to fetch and execute instructions from
CRM 132 in accordance with the instruction set architec-
tures. CPUs 141 comprises one or more CPUs that are
compatible with respective instruction set architectures.
CPUs 141 is enabled to fetch and execute instructions from
CRM 142 in accordance with the instruction set architec-
tures. In some embodiments, at least one of the instruction
set architectures of CPUs 131 is compatible with at least one
of the instruction set architectures of CPUs 141. In some
embodiments, any one or more of CPUs 151, CPUs 161,
CPUs 131, and CPUs 141 have instruction set architectures
that are compatible with each other.

[0474] At least a respective portion of each of CRM 152
and CRM 162 CRM 132, and CRM 142, is non-volatile and
comprised of any one or more of flash memory, magnetic
memory, optical memory, phase-change memory, and other
non-volatile memory technology elements.

[0475] In various embodiments and/or usage scenarios,
IEs 133 and/or 1IEs 143 comprise one or more inference
engines enabled to use weight information as determined by
Deep Learning Accelerator 120 (and indicated conceptually
by Weights 114 and/or Weights 115). In various embodi-
ments and/or usage scenarios, IEs 133 operates in conjunc-
tion with and/or under control of programs executed by
CPUs 131 and stored in CRM 132. In various embodiments
and/or usage scenarios, [Es 143 operates in conjunction with
and/or under control of programs executed by CPUs 141 and
stored in CRM 142. In various embodiments and/or usage
scenarios, all or any portions of IEs 133 and/or IEs 143 are
implemented via various combinations of HW and/or SW
techniques. In some embodiments, all or any portions of

Nov. 1, 2018

functionality provided by IEs 133 and/or 1Es 143 is imple-
mented using techniques such as implemented by and/or
associated with Deep Learning Accelerator 120. In various
embodiments and/or usage scenarios, all or any portions of
IEs 133 and/or IEs 143 are variously implemented via
techniques comprising various combinations of conven-
tional CPUs, conventional GPUs, conventional DSPs, con-
ventional FPGAs, and specialized hardware.

[0476] In various embodiments, 100 Gb 112, is variously
a 100 Gb Ethernet coupling for sending standard Ethernet
frames, a 100 Gb Ethernet coupling for sending modified
Ethernet frames, a 100 GB modified Ethernet coupling for
sending modified Ethernet frames, a 100 Gb serial coupling
of other-than Ethernet technology, or some other relatively
high-speed serial coupling.

[0477] Insome embodiments and/or usage scenarios, Cou-
pling 123 communicates information as wavelets.

[0478] In various embodiments, LAN 111 is implemented
using techniques such as Ethernet, Fibre Channel, and/or
other suitable interconnection technologies.

[0479] In some embodiments and/or usage scenarios,
Placement Server(s) 150 and Connection Server(s) 160 are
implemented and/or operated as a combined element (e.g.,
sharing CPU, CRM, and/or NIC resources), as illustrated
conceptually by Combined Server(s) 110. In some embodi-
ments and/or usage scenarios, Placement Server(s) 150 and
Connection Server(s) 160 are coupled via Internet 180 rather
than (or in addition to) LAN 111.

[0480] FIG. 2 illustrates selected details of an embodiment
of software elements associated with neural network training
and inference, using a deep learning accelerator, as Neural
Network Software 200. Placement Server(s) SW 210 com-
prises Neuron to PE Mapping SW 212, as well as other
elements not illustrated, according to embodiment. In vari-
ous embodiments and/or usage scenarios, all or any portions
of Placement Server(s) SW 210 is stored in CRM 152 and
executable by CPUs 151 of FIG. 1. One or more programs
of Neuron to PE Mapping SW 212 enable determining
placements of neurons of a neural network onto specific PEs
of PEs 122 of FIG. 1.

[0481] Connection Server(s) SW 220 comprises 100 Gb
NIC Driver 224, Training Info Provider SW 225, and Weight
Receiver SW 226, as well as other elements not illustrated,
according to embodiment. In various embodiments and/or
usage scenarios, all or any portions of Connection Server(s)
SW 220 is stored in CRM 162 and executable by CPUs 161
of FIG. 1. One or more programs of 100 Gb NIC Driver 224
enable communication between Connection Server(s) 160
and Deep Learning Accelerator 120, both of FIG. 1 (via
NICs 164 and 100 Gb 112, also of FIG. 1). One or more
programs of Training Info Provider SW 225 enable deter-
mination of training information for application under con-
trol of 100 Gb NIC Driver 224 for communication to Deep
Learning Accelerator 120 of FIG. 1 (via NICs 164 and 100
Gb 112). In various embodiments and/or usage scenarios,
the training information is variously determined from, e.g.,
non-volatile storage accessible to Connection Server(s) 160
and/or Internet 180, both of FIG. 1. One or more programs
of Weight Receiver SW 226 enable receiving weight infor-
mation under control of 100 Gb NIC Driver 224 as deter-
mined by Deep Learning Accelerator 120 (via NICs 164 and
100 Gb 112).

[0482] In various embodiments and/or usage scenarios,
Misc SW on FPGAs 250 conceptually represents SW

US 2018/0314941 Al

executed by one or more CPUs comprised in FPGAs 121 of
(FIG. 1). The CPUs of the FPGAs are, e.g., hard-coded
during manufacturing of one or more elements of FPGAs
121, and/or soft-coded during initialization of one or more
elements of FPGAs 121. In various embodiments and/or
usage scenarios, all or any portions of Misc SW on FPGAs
250 and/or a representation thereof is stored in non-volatile
memory comprised in FPGAs 121 and/or accessible to
Connection Server(s) 160. In various embodiments and/or
usage scenarios, Misc SW on FPGAs 250 enables perform-
ing various housekeeping functions, such as relating to
initialization and/or debugging of PEs 122 of FIG. 1.

[0483] In various embodiments and/or usage scenarios,
Task SW on PEs 260 conceptually represents distributed SW
executed as tasks on various PEs of PEs 122. In various
embodiments and/or usage scenarios, all or any portions of
Task SW on PEs 260 and/or a representation thereof is
stored in non-volatile memory comprised in PEs 122 and/or
accessible to Connection Server(s) 160. In various embodi-
ments and/or usage scenarios, Task SW on PEs 260 enables
performing processing of training data such as to determine
weights of a neural network (e.g., via forward, delta, and
chain passes).

[0484] Autonomous Vehicle SW 230 comprises Video
Camera SW 232, Inference Engine(s) SW 233, and Navi-
gating SW 234, as well as other elements not illustrated,
according to embodiment. In various embodiments and/or
usage scenarios, all or any portions of Autonomous Vehicle
SW 230 is stored in CRM 132 and executable by CPUs 131
of FIG. 1. One or more programs of Video Camera SW 232
enable controlling and/or operating Camera 135 of FIG. 1 to
provide video information to Inference Engine(s) SW 233.
One or more programs of Inference Engine(s) SW 233
enable controlling and/or operating IEs 133 of FIG. 1 to
determine navigational information, such as objects to avoid
and/or traffic lanes to follow, from the video information.
One or more programs of Navigating SW 234 enable navi-
gating Autonomous Vehicle SW 230 in response to the
navigational information.

[0485] Cell Phone SW 240 comprises Still Camera SW
242, Inference Engine(s) SW 243, Posting SW 244, as well
as other elements not illustrated, according to embodiment.
In various embodiments and/or usage scenarios, all or any
portions of Cell Phone SW 240 is stored in CRM 142 and
executable by CPUs 141 of FIG. 1. One or more programs
of Still Camera SW 242 enable controlling and/or operating
Camera 145 of FIG. 1 to provide still image information to
Inference Engine(s) SW 243. One or more programs of
Inference Engine(s) SW 243 enable controlling and/or oper-
ating [Hs 143 of FIG. 1 to determine tag information from
the still image information. One or more programs of
Posting SW 244 enable posting to a social networking web
site in response to the still image information and/or the tag
information.

[0486] In various embodiments and/or usage scenarios,
any one or more of SW collections Placement Server(s) SW
210, Connection Server(s) SW 220, Autonomous Vehicle
SW 230, and/or Cell Phone SW 240 optionally and/or
selectively comprise one or more operating system ele-
ments, e.g., one or more real-time operating systems, one or
more non-real-time operating systems, and/or one or more
other control programs to coordinate elements of each
respective SW collection.

Nov. 1, 2018

[0487] FIG. 3 illustrates selected details of an embodiment
of processing associated with training a neural network and
performing inference using the trained neural network, using
a deep learning accelerator, as Neural Network Training/
Inference 300. As illustrated, neurons of the neural network
are placed, e.g., allocated and/or associated with specific PE
resources in action 310. Then FPGA resources are initialized
in preparation for training of the neural network in action
320. Then the PE resources are initialized in preparation for
training of the neural network in action 330.

[0488] After the FPGA resources and PE resources are
initialized in preparation for the training, training data is
applied to the PEs in action 340. The PE resources process
the training data in action 350. Then a check is made to
determine if training is complete, e.g., because application
of the training data is complete and/or one or more comple-
tion criteria are met (such as an inference error below a
predetermine bound) in action 360. If not, then flow passes
back to action 340 for application of further training data. In
some scenarios, the training does not complete and in some
embodiments, control instead passes to another action (not
illustrated) to enable changing the neural network (e.g.,
adding layers of neurons, removing layers of neurons). The
changed neural network is then trained in accordance with
actions 310, 320, 330, 340, 350, and 360.

[0489] If training is complete, then flow continues to
provide weights that are results of the training for use in
inferences in 370. In some embodiments and/or usage sce-
narios, the weights are quantized, e.g., transformed to an
integer data format. In some embodiments and/or usage
scenarios, the integer data format is a reduced precision
number format (e.g., 8-bit or 16-bit). The weights are then
provided to one or more inference engines, and used to make
inferences in action 380.

[0490] In various embodiments and/or usage scenarios,
the inference engines correspond to one or more inference
applications, e.g., text translation, optical character recog-
nition, image classification, facial recognition, scene recog-
nition for a self-driving car, speech recognition, data analy-
sis for high energy physics, and drug discovery.

[0491] In various embodiments and/or usage scenarios,
the PE resources correspond, e.g., to PEs 122 of FIG. 1, and
the FPGAs resources correspond, e.g., to FPGAs 121 of
FIG. 1.

[0492] In various embodiments and/or usage scenarios,
any one or more of all or any portions of actions of Neural
Network Training/Inference 300 are performed by and/or
related to all or any portions of any one or more elements of
Neural Network System 100 of FIG. 1 and/or Neural Net-
work Software 200 of FIG. 2. For example, all or any
portions of action 310 are performed by Placement Server(s)
150 via execution of Neuron to PE Mapping SW 212. For
another example, all or any portions of action 320 are
performed by Placement Server(s) 150 via execution of
Neuron to PE Mapping SW 212. For another example, all or
any portions of action 330 are performed by Placement
Server(s) 150 via execution of Neuron to PE Mapping SW
212. For another example, all or any portions of action 330
are performed by PEs 122 via execution of Task SW on PEs
260. For another example, all or any portions of action 340
are performed by Connection Server(s) 160 via execution of
Training Info Provider SW 225. For another example, all or
any portions of action 350 are performed by PEs 122 via
execution of Task SW on PEs 260. For another example, all

US 2018/0314941 Al

or any portions of action 350 are performed by Combined
Server(s) 110, Placement Server(s) 150 and/or Connection
Server(s) 160. For another example, all or any portions of
370 are performed by Connection Server(s) 160 via execu-
tion of Weight Receiver SW 226. For another example, all
or any portions of action 370 are performed by FPGAs 121
via execution of Misc SW on FPGAs 250. For another
example, all or any portions of 380 are performed by IEs 133
such as under control of Inference Engine(s) SW 233. For
another example, all or any portions of action 380 are
performed by IEs 143 such as under control of Inference
Engine(s) SW 243.

[0493] In various embodiments and/or usage scenarios,
any one or more of all or any portions of actions of Neural
Network Training/Inference 300 are performed in conjunc-
tion with communicating information between various ele-
ments of Neural Network System 100 of FIG. 1. For
example, various actions of Neural Network Training/Infer-
ence 300 are performed at least in part via NICs 164 and 100
Gb 112 communicating information between Connection
Server(s) 160 and FPGAs 121. For another example, various
actions of Neural Network Training/Inference 300 are per-
formed in conjunction with FPGAs 121 and Coupling 123
communicating information between Connection Server(s)
160 and PEs 122. For another example, various actions of
Neural Network Training/Inference 300 performed in con-
junction with any one or more of Placement Server(s) 150,
Connection Server(s) 160, Autonomous Vehicle 130, and
Cell Phone 140 communicating information as enabled at
least in part by Internet 180.

[0494] FIG. 4 illustrates selected details of an embodiment
of a deep learning accelerator as Deep Learning Accelerator
400. Each of PE 499 elements has couplings to other of PE
499 elements. Two of the PE elements (PE 497 and PE 498)
are illustrated with unique identifiers, and are otherwise
respectively identical to a instances of PE 499. PE 497 is
illustrated with identifiers for each of four couplings (North
coupling 430, East coupling 431 with PE 498, and South
coupling 432) to others of the PEs and one of the I/O FPGAs
(West coupling 433), but is otherwise identical to others of
the PE elements illustrated. In some embodiments and/or
usage scenarios, the couplings are logical and/or physical. In
various embodiments and/or usage scenarios, the couplings
are usable to communicate wavelets, backpressure informa-
tion, or both. In various embodiments and/or usage sce-
narios, all or any portions of the physical couplings are to
physically adjacent PEs. In some embodiments and/or usage
scenarios, the PEs are physically implemented in a 2D grid.
In some embodiments and/or usage scenarios, the PEs are
physically implemented in a 2D grid of aligned rectangles,
and physically adjacent PEs correspond to PEs sharing a
horizontal boundary (North/South PEs with respect to each
other) and PEs sharing a vertical boundary (East/West PEs
with respect to each other).

[0495] In some embodiments and/or usage scenarios, an
array of identical instances of a same ASIC is formed on a
wafer, and each of the same ASICs comprises a plurality of
identical instances of a same PE (e.g., PE 499), forming a
wafer (e.g., Wafer 412) usable in wafer-scale integration
techniques. In some embodiments and/or usage scenarios, a
peripheral portion of the PEs are coupled to /O FPGAs 420.
Example ASICs are illustrated as ASIC 410, comprising a
column-organized section of PEs (replicated, e.g., in a
one-dimensional fashion to form a wafer), and ASIC 411,

Nov. 1, 2018

comprising a square-organized section or a rectangular-
organized section of PEs (replicated, e.g., in a two-dimen-
sional fashion to form a wafer). Other organizations of
ASICs on a wafer are contemplated.

[0496] In some embodiments and/or usage scenarios, neu-
rons associated with layers in a neural network are generally
placed on PE 499 elements in a left to right fashion, with
earlier layers (e.g., the input layer) on the left and subse-
quent layers (e.g., the output layer) on the right. Accord-
ingly, data flow during training is illustrated conceptually as
dashed-arrows Forward 401, Delta 402, and Chain 403.
During Forward 401, stimuli is applied to the input layer and
activations from the input layer flow to subsequent layers,
eventually reaching the output layer and producing a for-
ward result. During Delta 402, deltas (e.g., differences
between the forward result and the training output data) are
propagated in the backward direction. During Chain 403,
gradients are calculated based on the deltas (e.g., with
respect to the weights in the neurons) as they are generated
during Delta 402. In some embodiments and/or usage sce-
narios, processing for Delta 402 is substantially overlapped
with processing for 403.

[0497] In some embodiments and/or usage scenarios,
Deep Learning Accelerator 400 is an implementation of
Deep Learning Accelerator 120 of FIG. 1. In some embodi-
ments and/or usage scenarios, individual PE 499 elements
correspond to individual PEs of PEs 122 of FIG. 1. In some
embodiments and/or usage scenarios, each ASIC 410 ele-
ment or alternatively each ASIC 411 element corresponds to
all or any portions of PEs of PEs 122 implemented as
individual integrated circuits. In some embodiments and/or
usage scenarios, each ASIC 410 element or alternatively
each ASIC 411 element corresponds to (optionally identical)
portions of PEs 122 implemented via respective dice of a
wafer. In some embodiments and/or usage scenarios, 1/O
FPGAs 420 elements collectively correspond to FPGAs 121
of FIG. 1.

[0498] In some embodiments and/or usage scenarios, the
placement of neurons (e.g., associated with layers in a neural
network) onto PE 499 elements is performed in whole or in
part by all or any portions of Placement Server(s) SW 210
of FIG. 2.

Processing Element: Compute Element and Router

[0499] FIG. 5illustrates selected details of an embodiment
of a PE as PE 500 of a deep learning accelerator. PE 500
comprises Router 510 and Compute FElement 520. Router
510 selectively and/or conditionally communicates wavelets
between other PEs (e.g., logically adjacent and/or physically
adjacent PEs) and the instant PE via couplings 511-516.
Router 510 selectively and/or conditionally communicates
wavelets to the instant PE via Off Ramp 521 and commu-
nicates wavelets from the instant PE via On Ramp 522.
Compute Element 520 performs computations on data
embodied in the wavelets according to instruction address
information derivable from the wavelets. The instruction
address information is used to identify starting addresses of
tasks embodied as instructions stored in memory of the
compute element.

[0500] In various embodiments, any one or more of 511-
516 are omitted.

[0501] In some embodiments and/or usage scenarios, PE
500 is an embodiment of PE 499 of FIG. 4, and/or elements
of PE 500 correspond to an implementation of PE 499. In

US 2018/0314941 Al

some embodiments and/or usage scenarios, North 513, East
515, South 516, and West 511 correspond respectively to
North coupling 430, East coupling 431, South coupling 432,
and West coupling 433 of FIG. 4.

[0502] FIG. 6 illustrates selected details of an embodiment
a router of a PE, as Router 600. Consider that there are a
plurality of PEs, each comprising a respective router and a
respective CE. Router 600 is an instance of one of the
respective routers. Router 600 routes wavelets, in accor-
dance with color information of the wavelets and routing
configuration information, to the CE of the PE that the
instant router is comprised in, as well as others of the
routers. The routed wavelets are variously received by the
instant router and/or generated by the CE of the PE that the
instant router is comprised in. The routing enables commu-
nication between the PEs. Stall information is communi-
cated to prevent overflowing of wavelet storage resources in
Router 600.

[0503] Router 600 comprises four groups of interfaces,
Data In 610, Data Out 620, Stall Out 630, and Sources 640.
Data In 610, Data Out 620, Stall Out 630, and Sources 640
respectively comprise interface elements 611-617, 621-627,
631-637, and 641-647. Router 600 further comprises Write
Dec 651, Out 652, Gen Stall 656, and Stall 657, respectively
coupled to Data In 610, Data Out 620, Stall Out 630, and
Sources 640. Router 600 further comprises Sources 653
comprising Src 670 coupled to Gen Stall 656. Router 600
further comprises Data Queues 650, Control Info 660, and
Router Sched 654. Control Info 660 comprises Dest 661 and
Sent 662.

[0504] Data Queues 650 is coupled to Write Dec 651 to
receive incoming wavelet information, and coupled to Out
652 to provide outgoing wavelet information. Data Queues
650 is further coupled to Gen Stall 656 to provide data queue
validity information. Router Sched 654 is coupled to Control
Info 660 to receive control information relevant to sched-
uling queued wavelets. Router Sched 654 is further coupled
to Stall 657 to receive stall information relevant to sched-
uling queued wavelets. Router Sched 654 is further coupled
to Out 652 to direct presentation of queued wavelets on one
or more of 621-627. Router Sched 654 is further coupled to
Gen Stall 656 to partially direct generation of stall informa-
tion.

[0505] Invarious embodiments, each of interface elements
611-617, 621-627, 631-637, and 641-647 is variously imple-
mented via passive interconnect (e.g., wire(s) without buff-
ering), active interconnect (e.g., wire(s) with selective and/
or optional buffering), and coupling with logic to
accommodate additional functionality between one instance
of Router 600 and another instance of Router 600.

[0506] In some embodiments and/or usage scenarios,
Router 600 is an implementation of Router 510 of FIG. 5.
[0507] In some embodiments, ones of Data In 610 and
ones of Data Out 620 correspond to portions of West 511,
Skip West 512, North 513, Skip East 514, East 515, South
516, Off Ramp 521, and On Ramp 522. For example, On
Ramp 617 corresponds to On Ramp 522 and Off Ramp 627
corresponds to Off Ramp 521. As another example, Y+ 615
comprises the portion of North 513 enabled to receive data,
and Y+ 625 comprises the portion of North 513 enabled to
transmit data.

[0508] FIG. 7 illustrates selected details of an embodiment
of processing associated with a router of a processing
element, as Wavelet Ingress 710, Stall Info 720, and Wavelet

Nov. 1, 2018

Egress 730. Conceptually, the router accepts as many wave-
lets as possible from ingress ports, queuing as necessary and
as queue space is available, and routes as many wavelets as
possible to egress ports per unit time (e.g., clock cycle).
Wavelet Ingress 710 comprises actions 711-713 correspond-
ing to wavelet ingress from (logically and/or physically)
adjacent PEs and/or an instant PE, for each respective queue.
Stall Info 720 comprises actions 721-723 correspond to
providing stall information, for each respective queue.
Wavelet Egress 730 comprises actions 731-734 that corre-
spond to wavelet egress to (logically and/or physically)
adjacent PEs and/or the instant PE, for each respective
queue. In some circumstances, in accordance with color
information of a wavelet and routing configuration informa-
tion, Send Wavelet 734 sends a wavelet from a single queue
entry to a single destination (e.g., unicast). In some circum-
stances, in accordance with color information of a wavelet
and routing configuration information, Send Wavelet 734
sends a wavelet from a single queue entry to a plurality of
destinations (e.g., multicast). In various embodiments and/or
usage scenarios, any one or more of all or any portions of
actions of 710, 720, and/or 730 correspond to actions
performed by and/or related to all or any portions of any one
or more elements of Router 600 of FIG. 6.

[0509] FIG. 8 illustrates selected details of an embodiment
of' a compute element of a processing element, as CE 800.
[0510] In various embodiments, CE 800 is coupled via Off
Ramp 820 and On Ramp 860 to a router. CE 800 comprises
Qdistr 824 coupled to receive wavelets via Off Ramp 820.
Qdistr 824 is coupled to transmit wavelets to Scheduling
Info 896. Scheduling Info 896 comprises Qs 897, Active
Bits 898, and Block Bits 899.

[0511] Invarious embodiments, Qs 897 comprises a queue
for each fabric color (e.g., to hold wavelets created by other
processing elements and associated with the respective
color) and each local color (e.g., to hold wavelets created by
CE 800 and associated with the respective color), e.g., QO
897.0, . . ., and QN 897.N. Each one of Qs 897 (e.g., QO
897.0) is associated with a respective one of Active Bit 898
(e.g., Active Bit 0 898.0) and Block Bits 899 (e.g., Block Bit
0 899.0). Each one of Active Bits 898 and each one of Block
Bits 899 contain information about the respective one of Qs
897, e.g., Block Bit N 899.N indicates whether QN 897.N is
blocked.

[0512] In various embodiments, there is variously a physi-
cal Q for each color, one or more physical Qs for a
predetermined subset of colors, and one or more physical Qs
for a dynamically determined subset of colors. In various
embodiments, there is variously one or more physical Qs of
a same size (e.g., each enabled to hold a same number of
wavelets) and one or more physical Qs of differing sizes
(e.g., each enabled to hold a different number of wavelets).
In various embodiments, there are one or more physical Qs
that are variously mapped to virtual Qs, each of the virtual
Qs being associated with one or more colors. For example,
there are N logical Qs and less than N physical Qs. For
another example, some of Qs 897 are enabled to hold 8
wavelets and others of Qs 897 are enabled to hold 3
wavelets. In some embodiments, traffic for one or more
colors associated with a particular one of Qs 897 is estimated
and/or measured, and the particular one of Qs 897 is enabled
to hold a particular number of wavelets based on the traffic.
[0513] Hash 822 is coupled to Qdistr 824 and selects a
physical queue to store a wavelet, based at least in part on

US 2018/0314941 Al

the color of the wavelet (e.g., by applying a hash function to
the color). In some embodiments, the color associated with
a wavelet payload is stored explicitly with the wavelet
payload in a queue, such that an entry in the queue holds an
entire wavelet (payload with color). In some embodiments,
the color associated with a wavelet payload is not stored
explicitly with the wavelet payload in a queue, such that an
entry in the queue stores a wavelet payload without storing
an associated color. The color of the wavelet payload is
inferred, such as from the specific queue the wavelet payload
is stored in.

[0514] In some embodiments, one or more of Active Bits
898 and Block Bits 899 are implemented as respective bit
vectors with N entries, one entry for each color. In various
embodiments, one or more of Active Bits 898 and Block Bits
899 are implemented as respective bit fields in a table
comprising one entry for each color.

[0515] Picker 830 is coupled to Scheduling Info 896, RF
842, Dec 840, Base 890, PC 834, I-Seq 836, and D-Seq 844.
Picker 830 is enabled to select a wavelet for processing from
one of Qs 897. In some embodiments, Picker 830 selects a
wavelet by selecting one of Qs 897, and selecting the oldest
wavelet in the selected queue. In some scenarios, Picker 830
selects a new wavelet for processing when Dec 840 signals
that a terminate instruction has been decoded. In some other
scenarios (e.g., an instruction accessing fabric input), Picker
830 selects a new wavelet for processing from one of Qs 897
in response to a queue identifier received from D-Seq 844.
[0516] Picker 830 receives the selected wavelet from one
of Qs 897 and is enabled to send one or more of data and
index from the selected wavelet to RF 842. In some embodi-
ments, Qs 897 is coupled to Data Path 852, and the Data Path
is enabled to receive data directly from one of the Qs. Picker
830 is enabled to read a base address from Base 890 and
calculate an instruction address to send to PC 834 and [-Seq
836. Base 890 stores a base address and is also coupled to
D-Seq 844. PC 834 stores the address of the next instruction
to fetch. In various embodiments, Base 890 and PC 834 are
implemented as registers. In some embodiments, D-Seq 844
is enabled to read a base address from Base 890 and request
data at one or more addresses from Memory 854 and
D-Store 848, based at least in part upon the value read from
Base 890.

[0517] 1-Seq 836 is coupled to PC 834 and is enabled to
read and modify PC 834 (e.g., increment for a sequential
instruction or non-sequentially for a branch instruction).
1-Seq 836 is also coupled to Memory 854 and is enabled to
provide an instruction fetch address to Memory 854 (e.g.,
based upon PC 834).

[0518] Memory 854 is further coupled to Dec 840, Data
Path 852, and D-Seq 844. In response to an instruction fetch
address from 1-Seq 836, Memory 854 is enabled to provide
instructions located at the instruction fetch address to Dec
840 (an instruction decoder). In various embodiments,
Memory 854 is enabled to provide up to three instructions in
response to each instruction fetch address. In some embodi-
ments, an instruction is formatted in accordance with one or
more of FIGS. 25A, 25B, and 25C.

[0519] Dec 840 is enabled to determine one or more
characteristics of instructions, according to various embodi-
ments and/or usage scenarios. For example, Dec 840 is
enabled to parse instructions into an opcode (e.g., Opcode
2512 of FIG. 25A) and zero or more operands (e.g., source
and/or destination operands). For another example, Dec 840

Nov. 1, 2018

is enabled to identify an instruction according to instruction
type (e.g., a branch instruction, or a multiply-accumulate
instruction, and so forth). For yet another example, Dec 840
is enabled to determine that an instruction is a specific
instruction and activates one or more signals accordingly.
[0520] Dec 840 is coupled to Picker 830 via Terminate 812
and is enabled to signal that one of the decoded instructions
is a terminate instruction that ends a task (e.g., the last
instruction of the instructions executed in response a task
initiated in response to the selected wavelet).

[0521] In some scenarios, Dec 840 is enabled to decode a
branch instruction. Examples of branch instructions include:
conditional branch instructions that conditionally modify PC
834 and jump instructions that unconditionally modify PC
834. A branch instruction is executed by [-Seq 836 and
optionally and/or conditionally modifies PC 834. In some
scenarios, a branch instruction implements software control
flow (e.g., a loop) by conditionally modifying PC 834.
[0522] In response to decoding an instruction (e.g., a
multiply-accumulate instruction), Dec 840 is enabled to
transmit an opcode to Data Path 852. Dec 840 is coupled to
DSRs 846 and enabled to transmit one or more operand
identifiers to DSRs 846. Dec 840 is also coupled to D-Seq
844 and enabled to transmit one or more operand type
identifiers to D-Seq 844.

[0523] DSRs 846 comprise registers that hold Data Struc-
ture Descriptors (DSDs) and is coupled to and enabled to
send one or more DSDs to D-Seq 844. In some embodi-
ments, DSRs comprise source DSRs, destination DSRs,
extended DSRs, and stride registers. In response to receiving
an operand identifier from Dec 840, DSRs 846 is enabled to
read the DSD specified by the operand identifier, and to
transmit the DSD to D-Seq 844. In various embodiments,
DSRs 846 is enabled to receive up to two source operand
identifiers and one destination operand identifier, read two
source DSRs and one destination DSR, and transmit two
source DSDs and one destination DSD to D-Seq 844. In
some embodiments, the CE is enabled to explicitly write a
DSD to DSRs from memory in response to load DSR
instructions and the CE is enabled to explicitly write a DSD
to memory from DSRs in response to store DSR instruc-
tions. In some embodiments, DSRs 846 is coupled to and
enabled to receive data from and transmit data to Memory
854.

[0524] In some embodiments, DSRs 846 comprise three
sets of DSRs: 12 DSRs for source0 operands (sometimes
referred to as SODSRs), 12 DSRs for sourcel operands
(sometimes referred to as S1DSRs), and 12 DSRs for
destination operands (sometimes referred to as DDSRs). In
addition, DSRs 846 also comprises six extended DSRs
(sometimes referred to as XDSRs) and six stride registers. In
some embodiments, DSRs comprise 48 bits, XDSRs com-
prise 51 bits, and stride registers comprise 15 bits. In various
embodiments, respective instructions load 48 bits of data
from memory (e.g., D-Store 848 or Memory 854) into
respective DSRs (e.g., LDSOWDS, LDSIWDS, and
LDDWDS instructions respectively load source0, sourcel,
and destination DSRs). In various embodiments, respective
instructions store 48 bits of data from respective DSRs to
memory (e.g., STSOWDS, STSIWDS, and STDWDS
instructions respectively store source0, sourcel, and desti-
nation DSRs to memory). In some embodiments, instruc-
tions (e.g., LDXDS) load data from memory into XDSRs
and other instructions (e.g., STXDS) store data from XDSRs

US 2018/0314941 Al

to memory. Instructions that move data between memory
and XDSRs (e.g., LDXDS and STXDS) access 64 bits of
memory, and only use the lower 51 bits. In some embodi-
ments, instructions (e.g., LDSR) load data from memory
into stride registers, and other instructions (e.g., STSR) store
data from stride registers to memory. In some embodiments,
instructions that move data between memory and stride
registers access 16 bits of memory, and only use the lower
15 bits.

[0525] D-Seq 844 is also coupled to D-Store 848, RF 842,
and Picker 830, and is enabled to initiate accessing vector
data at various sources in response to DSDs received from
DSRs 846. In some scenarios (e.g., in response to receiving
a DSD describing one of a 1D memory vector, 4D memory
vector, and circular memory buffer), D-Seq 844 is enabled to
calculate a sequence of memory addresses to access (e.g., in
Memory 854 and/or D-Store 848). In some other scenarios,
(e.g., in response to receiving a DSD describing a fabric
input), D-Seq 844 is enabled to initiate reading fabric data
from one of Qs 897 via Picker 830. In yet other scenarios,
(e.g., in response to receiving a DSD describing a fabric
output), D-Seq 844 is enabled to initiate transforming data
into wavelet(s) and transmitting wavelet(s) to fabric via On
Ramp 860. In some embodiments, D-Seq 844 is enabled to
simultaneously access vector data at three sources (e.g., read
vector data from memory, read vector data from a fabric
input, and write vector data to a fabric output).

[0526] In some embodiments, D-Seq 844 is enabled to
access data in one or more registers in RF 842 (e.g., an
instruction with one or more input operands and/or one
output operand). In some scenarios, D-Seq 844 is enabled to
request operands from registers in RF 842. In yet other
scenarios, D-Seq 844 is enabled to request data from a
register (e.g., an index) in RF 842 as an input for calculating
a sequence of memory addresses to access in accordance
with a DSD.

[0527] Data Path 852 is coupled to RF 842 and D-Store
848. In various embodiments, any one or more of Memory
854, RF 842, Qs 897, and D-Store 848 are enabled to
provide data to Data Path 852 (e.g., in response to a request
from D-Seq 844) and to receive data from Data Path 852
(e.g., results of operations). Data Path 852 is also coupled
via On Ramp 860 to the router, and enabled to send data via
On Ramp 860 to the router. Data Path 852 comprises
execution resources (e.g., ALUs) enabled to perform opera-
tions (e.g., specified by an opcode decoded and/or provided
by Dec 840, according to embodiment). In some embodi-
ments, RF 842 comprises sixteen general-purpose registers
sometimes referred to as GPRO-GPR15. Each of the GPRs
is 16-bits wide and is enabled to store integer or floating-
point data.

[0528] In some embodiments, D-Store 848 is a type of
memory that is smaller and more efficient (e.g., lower joules
per bit of data read) than Memory 854. In some embodi-
ments, D-Store 848 is a type of memory of relatively lower
capacity (e.g., retaining less information) and relatively
lower access latency and/or relatively higher throughput
than Memory 854. In some scenarios, more frequently used
data is stored in D-Store 848, while less frequently used data
is stored in Memory 854. In some embodiments, D-Store
848 comprises a first address range and Memory 854 com-
prises a second, non-overlapping address range.

[0529] In some embodiments and/or usage scenarios, ele-
ments of the figure correspond to an implementation of

Nov. 1, 2018

Compute Element 520 of FIG. 5, and Off Ramp 820 and On
Ramp 860 correspond respectively to Off Ramp 521 and On
Ramp 522 of FIG. 5.

[0530] The partitioning and coupling illustrated in FIG. 8
are illustrative only, as other embodiments are contemplated
with different partitioning and/or coupling. For example, in
other embodiments, RF 842 and DSRs 846 are combined
into one module. In yet other embodiments, DSRs 846 and
Data Path 852 are coupled.

Tasks

[0531] FIG. 9illustrates selected details of an embodiment
of processing a wavelet for task initiation as flow 900.
Conceptually, the processing comprises initiating a task by
determining an address to begin fetching and executing
instructions of the task. The address is determined based at
least in part on information the wavelet comprises.

[0532] In some embodiments, processing a wavelet for
task initiation begins (Start 901) by selecting a ready wave-
let from among, e.g., one or more queues for processing
(Select Ready Wavelet for Task Initiation 905). In some
embodiments, the wavelet is selected based upon one or
more of: block/unblock state associated with each queue,
active/inactive state associated with each queue, color(s) of
previously selected wavelets, and a scheduling algorithm.
[0533] After selecting the ready wavelet, the wavelet is
checked to determine if the wavelet is a control wavelet or
a data wavelet (Control/Data? 908). If the wavelet is a
control wavelet, then a starting address of a task associated
with the control wavelet is calculated by adding the lower
six bits of the index of the wavelet to a base register (Add
Lower Index Bits to Base Register to Form Instruction
Address 930). If the wavelet is not a control wavelet, then
the wavelet is a data wavelet. The starting address of a task
associated with the data wavelet is calculated by adding the
base register to the color of the wavelet multiplied by four
(Add (Color*4) to Base Register to Form Instruction
Address 920). The starting address of the task, either as
calculated for a control wavelet or as calculated for a data
wavelet, corresponds to a starting address of instructions for
the task.

[0534] Once the starting address of the instructions has
been calculated, the instructions are fetched from the starting
instruction address (Fetch Instructions From Memory at
Instruction Address 950). One or more of the fetched
instructions are decoded and executed (Execute Fetched
Instruction(s) 960). Fetching and executing (as illustrated by
actions 950 and 960) continue (Not Terminate 961) until a
Terminate instruction is executed (Terminate 962), and then
processing associated with the initiated task is complete
(End 990). In some embodiments, a terminate instruction is
the last instruction associated with processing a wavelet.
After the initiated task is complete, flow optionally and/or
selectively proceeds to process another wavelet for task
initiating, beginning with Start 901.

[0535] According to various usage scenarios, the execut-
ing (Execute Fetched Instruction(s) 960) comprises execut-
ing sequential and/or control-flow instructions, and the
instruction address used for fetching varies accordingly
(Fetch Instructions From Memory at Instruction Address
950).

[0536] The ready wavelet selected for task initiation is
comprised of a particular color. In some embodiments
and/or usage scenarios, once a ready wavelet has been

US 2018/0314941 Al

selected for task initiation (Select Ready Wavelet for Task
Initiation 905), further wavelets, if any, received of the
particular color are consumed as operands for execution of
instructions (Execute Fetched Instruction(s) 960). The con-
suming of the wavelets comprising the particular color as
operands continues until fetching and executing of a termi-
nate instruction (Terminate 962).

[0537] In some embodiments and/or usage scenarios, all
or any portions of the actions of flow 900 correspond
conceptually to and/or are related conceptually to operations
performed by and/or elements of a CE of a PE, e.g., CE 800
of FIG. 8. As an example, Block Bits 899 corresponds to
block/unblock state associated with each queue. Active Bits
898 corresponds to active/inactive state associated with each
queue. As another example, portions of action 905 are
performed by Picker 830. Picker 830 selects the oldest
wavelet from one of Qs 897 that is ready (e.g., the associated
one of Block Bits 899 is not set and the associated one of
Active Bits 898 is set), according to a scheduling policy such
as round-robin or pick-from-last. The wavelet selected by
Picker 830 comprises a color and a wavelet payload for-
matted in accordance with one of FIG. 13A and FIG. 13B.
[0538] As another example, action 908 is performed by
elements of CE 800. If the control bit of the wavelet payload
(e.g., Control Bit 1320 of FIG. 13A) is asserted (determined
e.g., by Picker 830), then the wavelet is a control wavelet.
Subsequently, action 930 is performed by CE 800, such as
by Picker 830 adding contents of Base 890 to the 6 lowest
bits of Lower Index Bits 1321.1 of FIG. 13A to form the
instruction fetch address for instructions of the task associ-
ated with the control wavelet. Picker 830 then provides the
instruction fetch address to PC 834. If the control bit of the
wavelet payload (e.g., Control Bit 1320 of FIG. 13A) is
deasserted (determined e.g., by Picker 830), then the wavelet
is a data wavelet. Subsequently, action 920 is performed by
CE 800, such as by Picker 830 adding contents of Base 890
to the color of the wavelet (e.g., corresponding to Color
1324 of FIG. 13 A and FIG. 13B) multiplied by 4 to form the
instruction fetch address for instructions of the task associ-
ated with the data wavelet. Picker 830 then provides the
instruction fetch address to PC 834.

[0539] As another example, action 950 is performed by
elements of CE 800, e.g., PC 834, I-Seq 836, and Memory
854. Action 960 is performed by elements of CE 800, e.g.,
Dec 840, D-Seq 844, Memory 854, RF 842, and Data Path
852, among others. Execution comprises execution of a
terminate instruction. An example of a terminate instruction
is an instruction with a terminate bit asserted. In the context
of the example, when Dec 840 decodes a terminate instruc-
tion, Dec 840 signals Picker 830 via Terminate 812 that the
wavelet is finished, and Picker 830 selects another wavelet
for processing, corresponding, e.g., to action 905.

[0540] In various embodiments and/or usage scenarios, all
or any portions of elements of Processing a Wavelet for Task
Initiation 900 conceptually correspond to all or any portions
of executions of instructions of Task SW on PEs 260 of F1G.
2

[0541] In various embodiments and/or usage scenarios, all
or any portions of the actions comprising flow 900 concep-
tually variously correspond to all or any portions of flow
1500 of FIG. 15A and/or flow 1550 of FI1G. 15B. E.g., action
905 comprises all or any portions of action 1552, and actions
908, 920, 930, 950, and 960 comprise all or any portions of
action 1553.

Nov. 1, 2018

[0542] FIG. 10 illustrates selected details of an embodi-
ment of instruction processing associated with a compute
element of a processing element, as Instruction Processing
1000.

[0543] In some embodiments and/or usage scenarios, all
or any portions of the actions of Instruction Processing 1000
correspond or are related conceptually to operations per-
formed by and/or elements of a CE of a PE, e.g., CE 800 of
FIG. 8.

[0544] FIG. 11 illustrates selected details of an embodi-
ment of flow associated with dependency management via
closeouts, as Dependency Management 1100.

[0545] In some embodiments and/or usage scenarios, all
or any portions of the actions of Dependency Management
1100 correspond or are related conceptually to operations
performed by and/or elements of PEs 122 of FIG. 1. In some
embodiments and/or usage scenarios, all or any portions of
elements of Dependency Management 1100 conceptually
correspond to all or any portions of executions of instruc-
tions of Task SW on PEs 260 of FIG. 2.

[0546] FIG. 12 illustrates selected details of an embodi-
ment of flow associated with activation accumulation and
closeout, followed by partial sum computation and closeout
as Activation Accumulation/Closeout and Partial Sum Com-
putation/Closeout 1200.

[0547] In some embodiments and/or usage scenarios, all
or any portions of the actions of Activation Accumulation/
Closeout and Partial Sum Computation/Closeout 1200 cor-
respond or are related conceptually to operations performed
by and/or elements of PEs 122 of FIG. 1. In some embodi-
ments and/or usage scenarios, all or any portions of elements
of Activation Accumulation/Closeout and Partial Sum Com-
putation/Closeout 1200 conceptually correspond to all or
any portions of executions of instructions of Task SW on
PEs 260. In various embodiments and/or usage scenarios, a
closeout (e.g., associated with action 1210) is an example of
a control wavelet.

Wavelets

[0548] FIG. 13A illustrates selected details of an embodi-
ment of a sparse wavelet, as Sparse Wavelet 1301. Sparse
Wavelet 1301 comprises Sparse Wavelet Payload 1302 and
Color 1324. Sparse Wavelet Payload 1302 comprises Index
1321, Sparse Data 1322, and Control Bit 1320. Index 1321
comprises Lower Index Bits 1321.1 and Upper Index Bits
1321.2.

[0549] In some embodiments, Sparse Data 1322 com-
prises a field for a 16-bit floating-point number or a 16-bit
integer number. In various scenarios, Sparse Data 1322
variously represents a weight of a neural network, an input
or stimulus of a neural network, an activation of a neural
network, or a partial sum of a neural network.

[0550] In some embodiments, Index 1321 comprises a
16-bit field. In some scenarios, Index 1321 is an integer
number and is an index that explicitly indicates a specific
neuron of a neural network. In some embodiments, Lower
Index Bits 1321.1 is 6-bits, and Upper Index Bits 1321.2 is
10-bits.

[0551] In some embodiments, Control Bit 1320 is 1-bit
field. In some scenarios, Control Bit 1320 indicates whether
Sparse Wavelet Payload 1302 triggers control activity or
data activity. In some scenarios, control activity comprises
computing the last activation of a neuron and data activity
comprises computing activations of a neuron that are not the

US 2018/0314941 Al

last activation. In some embodiments and/or usage sce-
narios, the control activity comprises a closeout activity,
such as associated with any one or more of Closeout From
Prior Layer 1110 and/or Closeout to Next Layer 1122 of
FIG. 11, as well as any one or more of Receive Activation
Closeout 1204 and/or Transmit Closeout 1210 of FIG. 12.
[0552] In some embodiments, Color 1324 comprises a
5-bit field. In some embodiments, a color corresponds to a
virtual channel over a shared physical channel, such as via
routing in accordance with the color. In some scenarios, a
color is used for a specific purpose such as sending con-
figuration information to processing elements or sending
input of a neural network to a neuron that is mapped to a
processing element.

[0553] FIG. 13B illustrates selected details of an embodi-
ment of a dense wavelet, as Dense Wavelet 1331. Dense
Wavelet 1331 comprises Dense Wavelet Payload 1332 and
Color 1344. Dense Wavelet Payload 1332 comprises Dense
Data 1343.1, Dense Data 1343.2, and Control Bit 1340.
[0554] In some embodiments, Control Bit 1340 is a 1-bit
field and is functionally identical to Control Bit 1320.
[0555] In some embodiments, Color 1344 comprises a
5-bit field and is functionally identical to Color 1324.
[0556] In some scenarios, Dense Data 1343.1 and Dense
Data 1343.2 comprise fields for respective 16-bit floating-
point numbers or respective 16-bit integer numbers. In
various scenarios, Dense Data 1343.1 and Dense Data
1343.2 variously represent weights of a neural network,
inputs or stimuli of a neural network, activations of a neural
network, or partial sums of a neural network. In some
scenarios, Dense Data 1343.1 and Dense Data 1343.2 col-
lectively comprise a 32-bit floating-point number (e.g.,
Dense Data 1343.1 comprises a first portion of a 32-bit
floating-point number and Dense Data 1343.2 comprises a
second portion of a 32-bit floating-point number).

[0557] In various embodiments and/or usage scenarios,
usage of sparse wavelets vs. dense wavelets is variously
predetermined, dynamically determined, and/or both. In
various embodiments and/or usage scenarios, usage of
sparse wavelets vs. dense wavelets is determined by soft-
ware.

[0558] FIG. 14 illustrates selected details of an embodi-
ment of creating and transmitting a wavelet, as Wavelet
Creation Flow 1400. Actions of Wavelet Creation Flow 1400
are performed by various agents. A transmitting PE com-
prises a CE that performs actions 1403-1407, as illustrated
by CE of Transmitting PE 1420. The transmitting PE further
comprises a router that performs action 1408, as illustrated
by Router of Transmitting PE 1430. A receiving PE com-
prises a router that performs action 1409, as illustrated by
Router of Receiving PE 1440.

[0559] Creating and transmitting a wavelet begins (Start
1401) by initializing at least one transmitting PE and one or
more receiving PEs, as well as any PEs comprising routers
implementing fabric coupling the transmitting PEs and the
receiving PEs (Initialize PEs 1402). Each of the PEs com-
prises a respective router (e.g., Router 510 of FIG. 5) and a
respective CE (e.g., Compute Element 520 of FIG. 5). In
some scenarios, initializing a PE enables the CE of the PE
to perform computations and enables the router of the PE to
transmit, receive, and/or forward wavelets over the fabric.
[0560] In various embodiments, a DSR holds a DSD
comprising information about an operand such as location of
data elements (e.g., memory, fabric input, and/or fabric

Nov. 1, 2018

output), number of the data elements (e.g., length), an
address or addresses of the data elements (e.g., start address
and stride in memory). For fabric output operands (e.g.,
wavelets sent via the fabric), the DSR comprises a color for
the wavelet(s) on the fabric, a control bit, and optionally a
value or location of an index.

[0561] In some embodiments, the CE of the transmitting
PE configures a source (Set Source 1403). In some sce-
narios, the source is a source DSD describing a source
operand. In various embodiments, the source DSD describes
one or more data elements stored in one of: cache and
memory. In other embodiments, the source DSD describes
one or more data elements received via the fabric (e.g., the
data elements are payloads of wavelets arriving via the
fabric). In some other scenarios, the source comprises a
source register (e.g., one of RF 842). In yet other scenarios,
the source comprises an immediate specified in an instruc-
tion.

[0562] The CE also configures a destination DSD in a
destination DSR describing a fabric destination operand (Set
Destination (Fabric) DSR 1404). In some embodiments, the
destination DSD describes one or more data elements trans-
mitted via the fabric. In various embodiments, the source
and the destination DSDs are configured via one or more
instructions.

[0563] Subsequently, the CE fetches and decodes an
instruction (e.g., FMACH, MOV, LT16) comprising a des-
tination operand specified by the DSD in the destination
DSR (Fetch/Decode Instruction with Destination DSR 1404.
5). In some embodiments, the operand type fields of the
instruction specify whether an operand is specified by a
DSD.

[0564] The CE reads the destination DSD from the desti-
nation DSR and any source DSDs in source DSRs (Read
DSR(s) 1404.6). Based on the DSDs, the CE determines the
type of data structure, the source of the data element(s),
whether multiple data elements are read together (e.g., for a
SIMD operation), and a total number of data elements for
each operand. In some scenarios, DSRs are read for one or
more of: a source0 operand, a sourcel operand, and a
destination operand. In some embodiments and/or usage
scenarios, the DSRs are read entirely or partially in parallel,
and in other embodiments and/or usage scenarios, the DSRs
are read entirely or partially sequentially.

[0565] Then the CE of the transmitting PE reads the data
elements described by the source (e.g., a source DSD or a
register) and creates a wavelet comprising the data elements
based on the destination DSD. The CE reads (e.g., from
memory) the first data element(s) specified by the source
(Read (Next) Data Elements(s) from Queue/Memory 1405).
The data element(s) are used to form a wavelet payload. The
control bit of the wavelet payload and the color of the
wavelet are specified by the destination DSD. The wavelet
payload and the color are provided to the router of the
transmitting CE (Provide Data Element(s) as Wavelet to
Router 1406). In some embodiments and/or usage scenarios,
a single data element is used to create the payload of a sparse
wavelet. In other embodiments and/or usage scenarios, two
data elements are used to create the payload of a dense
wavelet.

[0566] The CE of the transmitting PE determines if addi-
tional data element(s) are specified by the destination DSD
(More Data Flements? 1407). If additional data element(s)
are specified by the destination DSD, then the CE creates

US 2018/0314941 Al

additional wavelet(s) via actions Read (Next) Source Data
Element(s) from Queue/Memory 1405, Provide Data Ele-
ment(s) as Wavelet to Router 1406, and More Data Ele-
ments? 1407 until no additional data element(s) are specified
by the destination DSD. If no additional data element(s) are
specified by the destination DSD, then flow concludes (End
1410). In some embodiments, the wavelets created via
action 1406 are of the same color as specified by the
destination DSR.

[0567] The router of the transmitting PE transmits the
wavelet(s) formed by the CE of the transmitting PE in
accordance with the color of the wavelet(s) (Transmit Wave-
let(s) to Fabric 1408), in accordance with respective colors
of the wavelets. In some embodiments and/or usage sce-
narios, the transmitting is directly to the router of the
receiving PE. In some embodiments and/or usage scenarios,
the transmitting is indirectly to the router of the receiving
PE, e.g., via one or more intervening PEs acting to forward
the wavelet(s) in accordance with the colors. The router of
the receiving PE receives the wavelet(s) in accordance with
the color (Receive Wavelet(s) from Fabric 1409).

[0568] In various embodiments, action 1408 is performed
asynchronously with respect to any one or more of actions
1405, 1406, and 1407. For example, a plurality of wavelets
is produced by action 1406 before any of the produced
wavelets is transmitted as illustrated by action 1408.
[0569] In various embodiments, Receive Wavelet(s) from
Fabric 1409 corresponds in various respects to Receive
Wavelet at Router 1503 of FIG. 15.

[0570] In various embodiments and/or usage scenarios, all
or any portions of any one or more of elements of Wavelet
Creation Flow 1400 correspond conceptually to and/or are
related conceptually to operations performed by and/or
elements of a PE, e.g., PE 499 of FIG. 4.

[0571] In various embodiments and/or usage scenarios, all
or any portions of any one or more of elements of Wavelet
Creation Flow 1400 (e.g., any one or more of actions
1403-1407) correspond conceptually to and/or are related
conceptually to operations performed by and/or elements of
a compute element, such as all or any portions of a CE of a
PE, e.g., Compute Element 520 of FIG. 5 and/or CE 800 of
FIG. 8. As an example, the destination DSR (associated with
Set DSR Destination (Fabric) DSR 1404) is one of DSRs
846. In some scenarios, the source DSR (associated with Set
Source 1403) is one of DSRs 846; in other scenarios the
source register (associated with Set Source 1403) is one of
RF 842.

[0572] As another example, CE 800 as the CE of the
transmitting PE performs action 1403 in response to a load
DSR instruction copying information from Memory 854
into the source DSR (e.g., one of DSRs 846). In various
embodiments, the source DSR specifies the location of the
data elements as one of Memory 854, D-Store 848, and RF
842. In some scenarios, the source DSR specifies an address
of a first data element in Memory 854 (e.g., address 0x0008),
a number of data elements (e.g., nine data elements), and a
stride between subsequent data elements (e.g., 12 bytes). As
another example, CE 800 performs action 1403 by writing
data into a register of RF 842.

[0573] As another example, CE 800 as the CE of the
transmitting PE performs action 1404 in response to a load
DSR instruction copying information from Memory 854
into the destination DSR (e.g., one of DSRs 846). In various
embodiments, the destination DSR specifies transformation

Nov. 1, 2018

of one or more data elements into one or more wavelets and
transmitted by Router 510 via a fabric-coupled egress port
(e.g., North 513). The destination DSR specifies a color for
the wavelet(s), a control bit for the wavelet(s), a number of
data elements (e.g., length), and information about an index
of the wavelet(s). In some scenarios, the destination DSR
specifies the value of the index and in other scenarios the
destination DSR specifies a location of the value of the index
(e.g., in a register of RF 842).

[0574] As another example, CE 800 as the CE of the
transmitting PE performs actions 1404.6, 1405, 1406, and
1407 in response to fetching and decoding an instruction
specifying a destination DSR as a destination operand
(action 1404.5). In some embodiments and/or usage sce-
narios, D-Seq 844 reads the source DSR and accesses one or
two data elements specified by the source DSR, e.g., from
Memory 854 or D-Store 848, thereby performing action
1405. In various embodiments, Memory 854 and/or D-Store
848 provide the one or two data elements to Data Path 852.
The Data Path transforms the data into a wavelet and sends
the wavelet via On Ramp 860, e.g., for storage into an
element of Data Queues 650 (of Router 600 of FIG. 6),
thereby performing action 1406. In some embodiments, On
Ramp 860 comprises storage to buffer one or more wavelets.
In some embodiments, CE 800 of the transmitting PE reads
a color from the destination DSR. Based on the color, CE
800 sends the wavelet payload via On Ramp 860, e.g., for
storage into an element of Data Queues 650, thereby com-
pleting action 1406. In some embodiments, CE 800 of the
transmitting PE performs action 1407 by comparing a num-
ber of data elements specified in the destination DSR (e.g.,
a length) against the number of data elements sent via action
1406 (e.g., tracked by a counter).

[0575] As another example, CE 800 as the CE of the
transmitting PE performs action 1406. The CE transforms
the one or two data element(s) into a wavelet payload,
according to the destination DSR. In some embodiments
and/or usage scenarios, the CE transforms a single data
element into a wavelet payload formatted in accordance with
Sparse Wavelet 1301 of FIG. 13A. The single data element
is transformed into an instantiation of Sparse Data 1322, an
index value specified by the destination DSR is transformed
into an instantiation of Index 1321, and a control bit from the
destination DSR is transformed into an instantiation of
Control Bit 1320, thereby forming an instantiation of Sparse
Wavelet Payload 1302.

[0576] As another example, CE 800 as the CE of the
transmitting PE transforms two data elements into a wavelet
payload formatted in accordance with Dense Wavelet 1331
of FIG. 13B. The first data element is transformed into an
instantiation of Dense Data 1343.1 and the second data
element is transformed into an instantiation of Dense Data
1343.2. The control bit from the destination DSR is trans-
formed into an instantiation of Control Bit 1340, thereby
forming an instantiation of Dense Wavelet Payload 1332.
[0577] Invarious embodiments and/or usage scenarios, all
or any portions of any one or more of elements of Wavelet
Creation Flow 1400 (e.g., any one or more of actions 1408
and 1409) correspond conceptually to and/or are related
conceptually to operations performed by and/or elements of
a router, such as all or any portions of a router of a PE, e.g.,
Router 510 of FIG. 5 and/or Router 600 of FIG. 6.

[0578] As an example, Transmit Wavelet(s) to Fabric 1408
is performed by Router 600 Router of Transmitting PE 1430

US 2018/0314941 Al

as follows. Router 600 determines the destination(s) of a
wavelet in Data Queues 650, e.g., by reading Dest 661. For
each color, Dest 661 indicates the output destination(s), e.g.,
one or more of Data Out 620. Router 600 transmits the
wavelet payload and the color (collectively the wavelet) to
the fabric, via Out 652 and one or more of Data Out 620. In
various embodiments, Router 600 of the transmitting PE
performs action 1408 asynchronously with any one or more
of actions 1405, 1406, and 1407.

[0579] As another example, Receive Wavelet(s) from Fab-
ric 1409 is performed by Router 600 as Router of Receiving
PE 1440 as follows. Router 600 receives transmitted wavelet
(s) at Data Queues 650 via one of Data In 610 and Write Dec
651. The received wavelet(s) are stored in one or more
locations of Data Queues 650.

[0580] In some embodiments and/or usage scenarios, all
or any portions of elements of Wavelet Creation Flow 1400
conceptually correspond to all or any portions of executions
of instructions of Task SW on PEs 260 of FIG. 2.

[0581] FIG. 15A illustrates selected details of an embodi-
ment of receiving a wavelet as Wavelet Receive Flow 1500.
Actions of Wavelet Receive Flow 1500 are performed by
various agents. A receiving PE comprises a router perform-
ing actions 1503-1506, as illustrated by Router of Receiving
PE 1520. The receiving PE further comprises a CE perform-
ing action 1507, as illustrated by CE of Receiving PE 1530.
[0582] Receiving a wavelet begins (Start 1501) by initial-
izing at least one transmitting PE and one or more receiving
PEs as well any PEs comprising routers implementing fabric
coupling the transmitting PEs and the receiving PEs (Ini-
tialize PEs 1502). Each of the PEs comprises a respective
router (e.g., Router 510 of FIG. 5) and a respective CE (e.g.,
Compute Element 520 of FIG. 5). In some scenarios, ini-
tializing a PE enables the CE of the PE to perform compu-
tations and enables the router of the PE to transmit, receive,
and/or forward wavelets over the fabric.

[0583] The following description assumes there is a single
receiving PE. In usage scenarios where there is plurality of
receiving PEs, the respective routers and CEs of each of the
receiving PEs perform processing in accordance with FIG.
15A.

[0584] The router of the receiving PE receives a wavelet
‘on a color’ (e.g., the wavelet comprises the color) of the
fabric (Receive Wavelet at Router 1503), as transmitted by
the transmitting PE. The router checks the destination(s) of
the wavelet based on the color, e.g., by reading a configu-
ration register. If the destination(s) of the wavelet includes
other PEs (To Other PE(s)? 1504), then the router transmits
the wavelet to the destination PE(s). The router sends the
wavelet to output(s) of the router (Transmit Wavelet to
Output(s) 1505), and the wavelet is transmitted from the
output across the fabric to the destination PE(s). If the
destination(s) of the wavelet does not include other PEs,
then the transmitting is omitted.

[0585] If the destination(s) of the wavelet do not include
the local CE (For Local CE? 1506), then no further action is
taken (End 1510). If one of the destination(s) of the wavelet
is the local CE, then the router provides the wavelet to the
local CE via the Off Ramp and the wavelet is written into a
picker queue associated with the color that the wavelet was
received on (Write Wavelet to Picker Queue 1507), thereby
receiving the wavelet (End 1510).

[0586] In various embodiments and/or usage scenarios, all
or any portions of any one or more of elements of Wavelet

Nov. 1, 2018

Receive Flow 1500 (e.g., any one or more of actions
1503-1506) correspond conceptually to and/or are related
conceptually to operations performed by and/or elements of
a router, such as all or any portions of a router of a PE, e.g.,
Router 510 of FIG. 5 and/or Router 600 of FIG. 6.

[0587] As an example, Receive Wavelet at Router 1503 is
performed by Router 600 as Router of Receiving PE 1520
when a wavelet is received on one of Data In 610. Subse-
quently, To Other PE(s)? 1504 and For Local CE? 1506 are
performed by Router 600, using the color of the wavelet to
determine the destination(s) of the wavelet, e.g., by reading
Dest 661. For each input color, Dest 661 indicates the output
destination(s), e.g., one or more of Data Out 620. If Dest 661
indicates that the output includes other PEs (e.g., via one of
SkipX+ 621, SkipX- 622, X+ 623, X- 624, Y+ 625, and Y-
626), then the wavelet is sent to other PEs by Router Sched
654. If Dest 661 indicates that the output includes the CE of
the PE (e.g., Offramp 627), then the wavelet is sent to the CE
by Router Sched 654. The wavelet remains in one of Data
Queues 650 until action 1505 is performed by scheduling the
wavelet (e.g., by Router Sched 654) to be sent to one or more
of Data Out 620.

[0588] In various embodiments and/or usage scenarios, all
or any portions of any one or more of elements of Wavelet
Receive Flow 1500 (e.g., action 1507) correspond concep-
tually to and/or are related conceptually to operations per-
formed by and/or elements of a compute element, such as all
or any portions of a CE of a PE, e.g., Compute Element 520
of FIG. 5 and/or CE 800 of FIG. 8. As an example, Write
Wavelet to Picker Queue 1507 is performed by sending the
wavelet via Off Ramp 820 to CE 800 and writing the wavelet
into one of Qs 897.

[0589] In some embodiments and/or usage scenarios,
wavelets are received by the router, queued, and routed to
router output ports without any specific determination that a
wavelet is for a local CE. Instead, wavelets destined for the
local CE are routed to the off ramp and are then written into
the picker queue. Wavelets not destined for the local CE are
routed to other-than the off ramp router outputs.

[0590] FIG. 15B illustrates selected details of an embodi-
ment of consuming a wavelet as Wavelet Consumption Flow
1550. Actions of Wavelet Consumption Flow 1550 are
performed by a CE of a PE.

[0591] Consuming a wavelet begins (Start 1551) by the
picker selecting the wavelet from a queue for processing
(Picker Selects Wavelet for Processing 1552), and then the
CE processes the wavelet. The CE fetches and executes
instructions associated with the wavelet (Fetch, Execute
Instructions 1553), thereby consuming the wavelet (End
1554). In some embodiments and/or usage scenarios, fetch-
ing and executing instructions associated with the wavelet
ends with fetching and executing a terminate instruction.

[0592] In some embodiments, Picker Selects Wavelet for
Processing 1552 is performed by Picker 830 of FIG. 8. In
various scenarios, Picker 830 selects one of Qs 897 that is
ready (e.g., Block Bits 899 and Active Bits 898 are set to
certain values), according to a scheduling policy such as
round-robin or pick-from-last. In some embodiments, por-
tions of Wavelet Consumption Flow 1550 correspond to
portions of Processing a Wavelet for Task Initiation 900 of
FIG. 9. As an example, action 1552 corresponds to action
905. As another example, action 1553 corresponds to actions
908, 920, 930, 950, and 960.

US 2018/0314941 Al

[0593] In some other scenarios, the wavelet is accessed as
an operand by an instruction (e.g., FMACH) executing on
the CE and the wavelet is consumed by the CE during the
execution of the instruction, e.g., as illustrated in FIG. 23.

Block and Unblock

[0594] FIG. 16 illustrates selected details of an embodi-
ment of block instruction and unblock instruction execution
as flow 1600. Conceptually, executing a block instruction
specifying a particular color prevents execution of instruc-
tions associated with the particular color at least until
execution of an unblock instruction specifying the particular
color.

[0595] Referring to the figure, executing an instruction
begins (Start 1601) by fetching the instruction from memory
and decoding the instruction (Fetch, Decode Instruction
1602). If the instruction decodes to a block instruction
(Block Instruction? 1603), then a block operation is per-
formed (Block Color(s) 1604). The source operand of the
block instruction specifies one or more colors to block with
respect to instruction processing associated with blocked/
unblocked colors. In various embodiments and/or usage
scenarios, the block operation is performed by setting one or
more block indicators to a blocked state for the one or more
colors specified by the source operand, and execution is
complete (End 1630). In various scenarios, the source oper-
and variously specifies blocking a single color, blocking all
colors, and blocking an arbitrary plurality of colors. In
subsequent operation, wavelets comprised of colors with
respective block indicators set to the blocked state are not
selected for processing.

[0596] If the instruction decodes to an unblock instruction
(Unblock Instruction? 1610), then an unblock operation is
performed (Unblock Color(s) 1611). The source operand of
the unblock instruction specifies one or more colors to
unblock with respect to instruction processing associated
with blocked/unblocked colors. In various embodiments
and/or usage scenarios, the unblock operation is performed
by resetting a block indicator to an unblocked state for the
one or more colors specified by the source operand, and
execution is complete (End 1630). In various scenarios, the
source operand variously specifies unblocking a single color,
unblocking all colors, and unblocking an arbitrary plurality
of colors. In subsequent operation, wavelets comprised of
colors with respective block indicators set to the unblocked
state are selectable for processing.

[0597] If the instruction decodes to an instruction that is
not a block instruction and that is not an unblock instruction,
then the instruction is otherwise executed (Execute Instruc-
tion 1620) and execution is complete (End 1630).

[0598] In some embodiments, if the source operand of a
block operation is an immediate (e.g., an 8-bit immediate),
then the value of the immediate specifies the color to be
blocked. If the source operand is not an immediate, then all
colors are blocked.

[0599] In some embodiments, the source operand of an
unblock operation is an immediate (e.g., an 8-bit immediate)
and the value of the immediate specifies the color to be
unblocked. In various embodiments, an unblock operation
with particular operands unblocks multiple colors.

[0600] In various embodiments and/or usage scenarios, all
or any portions of any one or more of elements of Block and
Unblock Instruction Processing Flow 1600 correspond con-
ceptually to and/or are related conceptually to operations

Nov. 1, 2018

performed by and/or elements of a compute element, such as
all or any portions of a CE of a PE, e.g., Compute Element
520 of FIG. 5 and/or CE 800 of FIG. 8.

[0601] As an example, Block Bits 899 comprise a bit for
each color (e.g., as entries in a table, or as a bit-mask). The
block operation (Block Color(s) 1604) is performed by
setting Block Bits 899 to a specific blocked value (e.g., ‘1°)
for the one or more colors specified by the source operand.
In some embodiments, Picker 830 selects a wavelet for
processing from a color where Block Bits 899 match an
unblocked value (e.g., ‘0’). As another example, the unblock
operation (Unblock Color(s) 1611) is performed by setting
Block Bits 899 to a specific unblocked value (e.g., ‘0”) for
the color specified by the source operand. In some embodi-
ments, Picker 830 selects a wavelet comprising a color
where Block Bits 899 match an unblocked value (e.g., <0°).
[0602] In some embodiments, portions of Block and
Unblock Instruction Processing Flow 1600 correspond to
portions of Processing a Wavelet for Task Initiation 900 of
FIG. 9. As an example, actions 1602 1603, 1604, 1610,
1611, and 1620 correspond to portions of actions 950 and
960 of FIG. 9.

[0603] In various embodiments and/or usage scenarios, all
or any portions of elements of Block and Unblock Instruc-
tion Processing Flow 1600 conceptually correspond to all or
any portions of executions of instructions of Task SW on
PEs 260 of FIG. 2.

Neuron Smearing

[0604] FIG. 17 illustrates selected details of an embodi-
ment of a neural network as Neural Network 1700. Network
1700 comprises three portions Input Layer 1710, Internal
Layers 1720, and Output Layer 1740. Each layer comprises
a plurality of neurons. Input Layer 171, comprises neurons
N11 1711, N12 1712, and N13 1713. Internal Layers 1720
comprises a first layer of neurons N21 1721, N22 1722, N23
1723, and N24 1724, followed by a second layer of neurons
N31 1731, N32 1732, and N33 1733. Output Layer 1740
comprises neurons N41 1741 and N42 1742.

[0605] Selected neurons (N21 1721, N22 1722, N23 1723,
and N24 1724 as well as N31 1731 and N32 1732) and
communications (1791, 1792, and 1793) between the
selected neurons are highlighted in the figure. The selected
neurons and pathways are discussed in more detail follow-
ing.

[0606] FIG. 18A illustrates selected details of a first
embodiment of an allocation of processing elements to
neurons. Sometimes allocation of processing elements to
neurons is referred to as placing neurons in processing
elements or alternatively placement of neurons. Like num-
bered elements of FIG. 18A correspond to like numbered
elements of FIG. 17 A first allocation of processing elements
to a subset of neurons of FIG. 17 (the highlighted neurons
N21 1721, N22 1722, N23 1723, and N24 1724 as well as
N31 1731 and N32 1732) is conceptually illustrated. Vertical
distance in the figure indicates relative usage of computa-
tional resources of each of five processing elements PEO
1820, PE1 1821, PE2 1822, PE3 1823, PE4 1824, and PES
1825.

[0607] Each of neurons N21 1721, N22 1722, N23 1723,
and N24 1724 represents approximately an equal amount of
computational resources, e.g., M operations, K storage
capacity, and J bandwidth to and from the storage. Each of
neurons N31 1731 and N32 1732 represents approximately

US 2018/0314941 Al

an equal amount of computational resources, e.g., M/2
operations, K/2 storage, and J/2 bandwidth. Thus, each of
N31 1731 and N32 1732 represents approximately one half
the computational resources of each of N21 1721, N22 1722,
N23 1723, and N24 1724. In various embodiments,
examples of computational resources comprise compute
operations, storage capacity, read bandwidth from storage,
write bandwidth to storage, input connections from other
neurons, and output connections to other neurons.

[0608] In the illustrated embodiment, neuron processing is
allocated such that each of the foregoing neurons is allocated
to an entire PE. More specifically, N21 1721 is allocated to
PEO 1840, N22 1722 is allocated to PE1 1841, N23 1723 is
allocated to PE2 1842, N24 1724 is allocated to PE3 1843,
N31 1731 is allocated to PE4 1844, and N32 1732 is
allocated to PES 1845. Therefore, four of the six processing
elements are fully subscribed (PEO 1820, PE1 1821, PE2
1822, and PE3 1823), while two of the six processing
elements are only one-half subscribed (PE4 1824 and PES
1825).

[0609] FIG. 18B illustrates selected details of a second
embodiment of an allocation of processing elements to
neurons. Like numbered elements of FIG. 18B correspond to
like numbered elements of FIG. 17 and FIG. 18A. A second
allocation of processing elements to a subset of neurons of
FIG. 17 (the highlighted neurons N21 1721, N22 1722, N23
1723, and N24 1724 as well as N31 1731 and N32 1732) is
conceptually illustrated. As in FIG. 18A, vertical distance in
the figure indicates relative usage of computational
resources of each of five processing elements PEO 1820, PE1
1821, PE2 1822, PE3 1823, PE4 1824, and PES 1825. Also
as in FIG. 18A, each of N31 1731 and N32 1732 represents
approximately one half the computational resources of each
of N21 1721, N22 1722, N23 1723, and N24 1724.

[0610] In the illustrated embodiment, neuron processing is
allocated such that processing for respective neurons is
“smeared” across processing elements. Conceptually, neu-
rons are “split” into portions suitable for processing ele-
ments to be allocated to. As illustrated in the figure, neurons
are split and processing elements allocated so that four of the
six processing elements are equally (and fully) subscribed
(PEO 1820, PE1 1821, PE2 1822, and PE3 1823), while two
of the six processing elements are completely unsubscribed
and therefore available for other uses (PE4 1824, and PES
1825). In some embodiments and/or usage scenarios, unsub-
scribed processing elements remain unused and consume
little or no active and/or static power (e.g., via one or more
of clock gating and power gating). More specifically, N21
1721 is allocated in two halves (Y2 N21 1721.1 and Y2 N21
1721.2) to two respective processing elements (PEO 1820
and PE2 1822). Similarly, N22 1722 is allocated in two
halves (12 N22 1722.1 and %2 N22 1722.2) to two respective
processing elements (PEO 1820 and PE2 1822). N23 1723 is
allocated in two halves (Y2 N23 1723.1 and %2 N23 1723.2)
to two respective processing elements (PE1 1821 and PE3
1823) and N24 1724 is allocated in two halves (12 N24
1724.1 and % N24 1724.2) to two respective processing
elements (PE1 1821 and PE3 1823). N31 1731 is allocated
in four fourths (¥4 N31 1731.1, %4 N31 1731.2, % N31
1731.3, and ¥4 N31 1731.4) to four respective processing
elements (PEO 1820, PE1 1821, PE2 1822, and PE3 1823).
Similarly, N32 1732 is allocated in four fourths (4 N32
17321, 4 N32 1732.2, /4 N32 1732.3, and %4 N32 1732.4)
to four respective processing elements (PEO 1820, PE1

Nov. 1, 2018

1821, PE2 1822, and PE3 1823). In various embodiments,
neurons are split and processing elements allocated based on
one or more computational resources associated with the
neurons. In some embodiments, neurons are split and pro-
cessing elements allocated based on the hardware resources
available in the processing elements (e.g., some neurons
require specific hardware resources such as PRNGs).

[0611] FIG. 19 illustrates selected details of an embodi-
ment of smearing a neuron across a plurality of processing
elements. The splitting results in portions of the split neuron
that are then smeared across processing elements. Like
numbered elements of FIG. 19 correspond to like numbered
elements of FIG. 17, FIG. 18A, and FIG. 18B. As illustrated
by FIG. 18B, N21 1721 is split into two portions %2 N21
1721.1 and 2 N21 1721.2 implemented respectively by PEO
1820 and PE2 1822.

[0612] Conceptually, N21 1721 is considered to comprise
local compute and local storage, as well as inputs and
outputs. Respective elements of N21 1721 are partitioned
respectively. The local compute of N21 is partitioned into %2
Local Compute 1930.1 and %2 Local Compute 1930.2. The
local storage of N21 is partitioned into 2 Local Storage
1940.1 and V2 Local Storage 1940.2. The inputs of N21 are
partitioned into a first half in0 1910, inl1 1911 and in2 1912
as well as a second half in3 1913, in4 1914, and in5 1915.
The outputs of N21 are partitioned into a first half out0 1920,
outl 1921, out2 1922 as well as a second half out3 1923,
out4 1924, and out5 1925.

[0613] Y2 Local Compute 1930.1, 2 Local Storage 1940.
1, in0 1910 with inl 1911, and out0 1920 are implemented
by PEO 1820. 2 Local Compute 1930.2, 2 Local Storage
1940.2, in2 1912 with in3 1913, and outl 1921 are imple-
mented by PEO 1822.

[0614] In some embodiments and/or usage scenarios,
smearing a neuron across more than one processing element
is implemented at least in part by additional computation,
additional storage, and/or additional communication not
otherwise performed/used by the neuron. The additional
computation, additional storage, and/or additional commu-
nication, enables, e.g., combining partial results from the
portions of the neuron into results corresponding to results
of the entire neuron. Additional Compute 1950.1 and Addi-
tional Storage 1960.1 are representative of additional com-
pute and additional storage for %2 N21 1721.1, and are
implemented by PEO 1820. Additional Compute 1950.2 and
Additional Storage 1960.2 are representative of additional
compute and additional storage for 2 N21 1721.2, and are
implemented by PEO 1822.

[0615] Additional Communication 1970 is representative
of additional communication between 2 N21 1721.1 and %2
N21 1721.2, and is implemented by fabric connectivity
between PEO 1820 and PEO 1822. In some embodiments
and/or usage scenarios, all or any portions of Additional
Communication 1970 is representative of communications
that would occur internally to a single processing element if
the single processing element entirely implemented N21
1721.

[0616] FIG. 20 illustrates selected details of an embodi-
ment of communication between portions of split neurons.
Like numbered elements of FIG. 20 correspond to like
numbered elements of FIG. 17, FIG. 18A, FIG. 18B, and
FIG. 19. Allocations of PEO 1820, PE1 1821, PE2 1822, and

US 2018/0314941 Al

PE3 1823 to neuron portions are as illustrated by FIG. 18B.
For clarity, only allocations specific to PEO 1820 and PE1
1821 are illustrated.

[0617] Wafer Portion 2000 comprises PEO 1820, PE1
1821, PE2 1822, and PE3 1823. Couplings between PEs of
Wafer Portion 2000 are illustrated as (coupling between
adjacent PEs) 2040 coupling PEO 1820 and PE1 1821, 2041
coupling PE1 1821 and PE3 1823, 2043 coupling PE3 1823
and PE2 1822, and 2044 coupling PE2 1822 and PEO 1820.
Couplings to PEs adjacent to Wafer Portion 2000 are illus-
trated as (portion of coupling between adjacent PEs) 2050,
2051, 2052, 2053, 2054, 2055, 2056, and 2057. The cou-
plings to adjacent PEs are ‘portions’ since in some embodi-
ments and/or usage scenarios, all or any portions of the
couplings are comprised in wafer portions adjacent to Wafer
Portion 2000, rather than entirely in Wafer Portion 2000.
[0618] As a first example, communication portion 1791.1
conceptually represents a portion of communication 1791
between N11 1711 and N21 1721 (of FIG. 17), e.g., from an
input layer to an internal layer, with portions of a split
neuron in respective processing elements. More specifically,
recall that N21 1721 is split into two portions (2 N21
1721.1 and Y2 N21 1721.2; see FIG. 18B). Thus, commu-
nication 1791 is split into two portions. Communication
portion 1791.1 is illustrative specifically of the portion that
is with respect to 2 N21 1721.1. Communication portion
1791.1 is transported via (portion of coupling between
adjacent PEs) 2057 between a PE adjacent to Wafer Portion
2000 to PEO 1820 (allocated to %2 N21 1721.1). In some
embodiments and/or usage scenarios, communication 1791
is split into two portions, communication portion 1791.1
(illustrated) and communication portion 1791.2 (not illus-
trated). In some embodiments and/or usage scenarios, trans-
port of communication portion 1791.1 and communication
portion 1791.2 are via a same virtual channel. In some
embodiments and/or usage scenarios, transport of commu-
nication portion 1791.1 and communication portion 1791.2
are via respective unique virtual channels.

[0619] As a second example, communication portion
1792.1 conceptually represents a portion of communication
1792 between N21 1721 and N31 1731 (of FIG. 17), e.g.,
from a first internal layer to a second internal layer, with
portions of split neurons in respective processing elements.
More specifically, recall that N21 1721 is split into two
portions (2 N21 1721.1 and %2 N21 1721.2; see FIG. 18B).
Further recall that N31 1731 is split into four portions (Y4
N31 1731.1, a N31 1731.2, 4 N31 1731.3, and %4 N31
1731 4; see FIG. 18B). Thus, communication 1792 is split
into portions. Communication portion 1792.1 is illustrative
specifically of the portion that is with respect to 2 N21
1721.1 and %4 N31 1731.2. Communication portion 1792.1
is transported via (coupling between adjacent PEs) 2040
between PEO 1820 (allocated to %2 N21 1721.1) and PE1
1821 (allocated to ¥4 N31 1731.2). In various embodiments
and/or usage scenarios, transport of communication portion
1792.1 (illustrated) and, e.g., other portions (not illustrated)
of communication 1792 are via a same virtual channel, via
unique virtual channels per portion, via virtual channels per
portion associated with a particular neuron, and/or via
virtual channels per portion associated with a particular
processing element.

[0620] As a third example, communication portion 1793.1
conceptually represents a portion of communication 1793
between N23 1723 and N31 1731 (of FIG. 17), e.g., from a

Nov. 1, 2018

first internal layer to a second internal layer, with portions of
split neurons in a same processing element. More specifi-
cally, recall that N23 1723 is split into two portions (12 N23
17231 and 2 N23 1723.2); see FIG. 18B). Further recall
that N31 1731 is split into four portions (¥4 N31 1731.1, Y4
N31 1731.2, ¥4 N31 1731.3, and %4 N31 1731.4; see FIG.
18B). Thus, communication 1793 is split into portions.
Communication portion 1793.1 is illustrative specifically of
the portion that is with respect to 2 N23 1723.1 and Y4 N31
1731.2. Communication portion 1793.1 is transported via
one or more mechanisms internal to PE1 1821 (allocated to
15 N23 1723.1 and %4 N31 1731.2). E.g., PE1 1821 uses
internal resources (such as a router) to internally feedback an
output as an input, and/or to internally provide an input from
an output. In some embodiments and/or usage scenarios,
transport of communication portion 1793.1 is via a virtual
channel that results in an output being used as an input,
and/or an input being provided from an output.

[0621] As a fourth example, communication 2060 concep-
tually represents all or any portions of Additional Commu-
nication 1970 (of FIG. 19), e.g., communications within a
neuron that is split across processing elements. More spe-
cifically, communication 2060 illustrates specifically com-
munications between two of the four portions that N32 1732
is split into (¥ N32 1732.1 and Y4 N32 1732.2; see FIG.
18B). Communication 2060 is transported via (coupling
between adjacent PEs) 2040 between PEO 1820 (allocated to
14 N32 1732.1) and PE1 1821 (allocated to %4 N32 1732.2).
In various embodiments and/or usage scenarios, communi-
cation 2060 is via virtual channel dedicated to communica-
tion 2060, a virtual channel shared with communication
2060 and communications between other portions of N32
1732, and a virtual channel shared with communication
2060 and all or any portions of neurons split across pro-
cessing elements.

[0622] In some embodiments and/or usage scenarios, all
or any portion of Wafer Portion 2000 comprises PEs 122 of
FIG. 1. In some embodiments and/or usage scenarios, any
one of PEO 1820, PE1 1821, PE2 1822, and PE3 1823
correspond to PE 497 of FIG. 4. In some embodiments
and/or usage scenarios, any one or more of coupling
between adjacent PEs 2041, 2042, 2043, and 2044 and/or
portion of coupling between adjacent PEs 2050, 2051, 2052,
2053, 2054, 2055, 2056, and 2057 correspond to any one or
more of North coupling 430, East coupling 431, South
coupling 432, and West coupling 433 of FIG. 4.

[0623] Concepts relating to neuron smearing (e.g., as
described with respect to and illustrated by FIG. 17, FIG.
18A, FIG. 18B, FIG. 19, and FIG. 20) are applicable to
neural networks of various topologies and types, such as
FCNNs, RNNs, CNNs, LSTM networks, autoencoders, deep
belief networks, and generative adversarial networks.

[0624] In various embodiments and/or usage scenarios,
neurons are split into same-sized portions, e.g., halves,
fourths, eights, and so forth. In various embodiments and/or
usage scenarios, neurons are split into different-sized por-
tions, e.g., a first portion that is a half, and second and third
portions that are respectively each fourths. In various
embodiments and/or usage scenarios, neurons are split into
arbitrarily-sized portions.

[0625] In various embodiments and/or usage scenarios, a
multiplicity of PEs are allocated to a single neuron. In

US 2018/0314941 Al

various embodiments and/or usage scenarios, a single PE is
allocated to the respective entireties of a multiplicity of
neurons.

[0626] In various embodiments and/or usage scenarios,
allocation of PEs to neurons is entirely or partially respon-
sive to static and/or dynamic measurements of computa-
tional and/or storage requirements. In various embodiments
and/or usage scenarios, allocation of PEs to neurons is
entirely or partially responsive to dimensionality of data to
be processed.

[0627] In various embodiments and/or usage scenarios,
dataflow as represented by directions of arrows is unidirec-
tional (as illustrated by drawn arrowhead), bidirectional,
and/or reverse-direction (against drawn arrowhead). As a
specific example, in various embodiments and/or usage
scenarios, communication 1792 (of FIG. 17) is representa-
tive of dataflow from N21 1721 to N31 1731 (e.g., during
forward propagation) or in reverse from N31 1731 to N21
1721 (e.g., during back propagation). Thus, communication
portion 1792.1 and therefore communication on (portion of
coupling between adjacent PEs) 2057 occurs from PE0 1820
to PE1 1821 (e.g., during forward propagation) and in
reverse from PE1 1821 to PEO 1820 (e.g., during back
propagation).

Vectors and Data Structure Descriptors

[0628] In various embodiments and/or usages scenarios,
processing of one or more vectors, each vector comprising
respective one or more of data elements, is performed. A
vector is variously read from memory (e.g., of a CE of a PE,
such as Memory 854 or D-Store 848 of FIG. 8), written to
the memory, received from a fabric, or transmitted to the
fabric. Vectors read from or written to the memory are
sometimes referred to as ‘memory vectors’. Vectors received
from or transmitted to the fabric (e.g., as wavelets) are
sometimes referred to as ‘fabric vectors’. DSDs from DSRs
(as well as XDXDs from XDSRs) are usable to determine
addressing patterns for memory vectors and accessing pat-
terns for fabric vectors.

[0629] Each element identifier in the description of FIGS.
21A-E, FIGS. 22A-B, and FIGS. 23-24 having a first digit
of “8” refers to an element of FIG. 8, and for brevity is not
otherwise specifically identified as being an element of FIG.
8.

[0630] FIG. 21A illustrates selected details of an embodi-
ment of a Fabric Input Data Structure Descriptor (aka Fabric
Input DSD), as Fabric Input Data Structure Descriptor 2100.
In some embodiments, Fabric Input Data Structure Descrip-
tor 2100 describes a fabric vector received by a PE from the
fabric, as well as various parameters relating to processing
of the fabric vector. In various embodiments and/or usage
scenarios, either a source0 operand or a sourcel operand of
an instruction refers to a DSR containing an instance of a
DSD in accordance with Fabric Input Data Structure
Descriptor 2100.

[0631] Fabric Input Data Structure Descriptor 2100 com-
prises Length 2101, UTID (Microthread Identifier) 2102,
UE (Microthread Enable) 2103, SW (SIMD Width) 2104,
AC (Activate Color) 2105, Term (Terminate Microthread on
Control Wavelet) 2106, CX (Control Wavelet Transform
Enable) 2107, US (Microthread Sparse Mode) 2108, Type
2109, SS (Single Step) 2110, SA (Save Address/Conditional

Nov. 1, 2018

Single Step Mode) 2111, SC (Color Specified/Normal
Mode) 2112, SQ (Queue Specified/Normal Mode) 2113, and
CH (Color High) 2114.

[0632] In some embodiments, Length 2101 comprises a
15-bit integer specifying the length of the vector, e.g., the
number of data elements in the vector.

[0633] In some embodiments, UE (Microthread Enable)
2103 comprises a 1-bit field indicating whether, under at
least some conditions, microthreading is enabled during
processing of the fabric vector, sometimes referred to as the
fabric vector ‘enabling microthreading’. If at least one
operand (source or destination) of an instruction is a fabric
vector enabling microthreading, then on either an input or
output stall during processing of the instruction, processing
is enabled to switch (provided sufficient microthreading
resource are available) to another instruction of another task.
When the stall is cleared, then processing (eventually)
returns to the previously stalled instruction. An example
input stall is when at least one element of an input fabric
vector operands is not available. An example output stall is
when there is insufficient space to buffer results associated
with an element of an output fabric vector. In some sce-
narios, a fabric vector that does not enable microthreading is
processed synchronously and stalls processing on either an
input or output stall. In some scenarios, a fabric vector that
enables microthreading is processed asynchronously and
reduces or avoids stalling the processing element on either
an input or output stall. If a fabric vector enables micro-
threading, then the processing element is enabled to condi-
tionally switch to processing a different instruction (instead
of stalling) and subsequently resume processing the fabric
vector at a later point in time (e.g., when data is available).
[0634] In some embodiments, UTID (Microthread Identi-
fier) 2102 comprises a 3-bit field identifying one of a
plurality of microthreads and/or resources associated with
one of a plurality of microthreads. The microthreads and/or
the resources are associated, e.g., with a fabric vector that
enables microthreading. In some embodiments, the hard-
ware provides resources for eight microthreads. In some
embodiments and/or usage scenarios, UTID 2102 identifies
or partially identifies one of Qs 897.

[0635] In some embodiments, SW (SIMD Width) 2104
comprises a 2-bit field specifying the number of operations
(e.g., one, two, or four) that are, in some implementations,
executed in parallel. For example, an FMACH, FADDH,
FMULH or MOV16 instruction performs multiple (up to
four) operations in parallel on respective operands. In some
implementation, the SW field is used to determine how to
parse wavelets into data versus index information. For
example, when the SW field is four, then two wavelets, each
having two data values (and no index values) provide four
operands, e.g., in parallel. Continuing with the example,
when the SW field is two, then a single wavelet having two
data values (and no index value) provides two operands,
e.g., in parallel. Continuing with the example, when the SW
field is one, then a single wavelet having a single data value
and a single index value provides a single operand.

[0636] In some embodiments, AC (Activate Color) 2105
comprises a 6-bit field specifying a color to activate (e.g., via
an activate operation). In some scenarios, when processing
is complete for a fabric vector that enables microtheading,
the color specified by the AC field is activated and a task
initiated based on the activated color. The completion of
processing occurs, e.g., when all elements of the fabric

US 2018/0314941 Al

vector have been processed, or when Term 2106 indicates to
terminate upon encountering a control wavelet and a control
wavelet is encountered while processing the fabric vector. In
some embodiments, AC 2105 is enabled to specify one of:
a local color and a fabric color.

[0637] In some embodiments, Term (Terminate Micro-
thread on Control Wavelet) 2106 comprises a 1-bit field
specifying whether to terminate upon receiving a control
wavelet. If the wavelet at the head of the queue specified by
Fabric Input Data Structure Descriptor 2100 (e.g., one of Qs
897 as variously specified by various functions of any
combination of UTID 2102, SC 2112, and/or SQ 2113, as
described elsewhere herein) is a control wavelet (e.g., Con-
trol Bit 1320 of FIG. 13A or Control Bit 1340 of FIG. 13B
is set) and Term 2106 is set, then the instruction is termi-
nated and the color specified by AC 2105 is activated.
[0638] In some embodiments, CX (Control Wavelet
Transform Enable) 2107 comprises a 1-bit field specifying
whether to transform control wavelets. If CX 2107 is set,
then in response to receiving a control wavelet in the fabric
vector, bits 15:6 of the index register are set to all “1”s. In
some embodiments and/or usage scenarios, if bits 15:6 of the
index register are all “1”” s, then the control bits of any output
wavelets associated with an output fabric vector referencing
the index register are set.

[0639] In some embodiments, US (Microthread Sparse
Mode) 2108 comprises a 1-bit field specifying whether a
fabric vector that enables microthreading (e.g., via the UE
field) is processed in a sparse mode. If US 2108 is set, then
the fabric vector comprises a vector of sparse data elements
and respective wavelet indices of the operand described by
Fabric Input Data Structure Descriptor 2100. The indices are
optionally and/or selectively used for address calculation of
memory operands, dependent on WLI 2152 (of FIG. 21C).
[0640] Insomeembodiments, Type 2109 comprises a 3-bit
field specifying a data structure type and/or how to interpret
other fields of Fabric Input Data Structure Descriptor 2100.
Type 2109 is “0” for all instances of Fabric Input Data
Structure Descriptor 2100.

[0641] Insome embodiments, SS (Single Step) 2110 com-
prises a 1-bit field specifying whether single step mode
operation is enabled, under at least some conditions, for
operations using the DSD as an operand. In some scenarios,
an instruction with one or more operands that enable single
step mode operates in single step mode.

[0642] In some embodiments, SA (Save Address/Condi-
tional Single Step Mode) 2111 comprises a 1-bit field
specifying whether save address mode operation is enabled,
under at least some conditions, for operations using the DSD
as an operand.

[0643] In some embodiments and/or usage scenarios, a
color is activated and in response a task is initiated at an
address based at least in part on the color. Once initiated, the
task executes. In some scenarios, an input fabric vector is
provided from the queue associated with the color of the
currently executing task. In some embodiments, SC (Color
Specified, Normal Mode) 2112 comprises a 1-bit field that if
set, specifies that the input fabric vector is provided from a
specific queue (e.g., one of Qs 897) associated with a
specific fabric color. The specific fabric color is specified
(e.g., as a 5-bit color) as a concatenation of lower bits UTID
2102 (comprising a 3-bit field) and upper bits CH 2114
(comprising a 2-bit field). In some embodiments, SQ (Queue
Specified, Normal Mode) 2113 comprises a 1-bit field that if

Nov. 1, 2018

set, specifies that the input fabric vector is provided from a
specific queue (e.g., one of Qs 897). If SQ 2113 is set, then
the input fabric vector is provided from the one of Qs 897
specified by UTID 2102.

[0644] FIG. 21B illustrates selected details of an embodi-
ment of a Fabric Output Data Structure Descriptor (aka
Fabric Output DSD), as Fabric Output Data Structure
Descriptor 2120. In some embodiments, Fabric Output Data
Structure Descriptor 2120 describes a fabric vector created
by a PE and transmitted over the fabric, as well as various
parameters relating to processing of the fabric vector. In
various embodiments and/or usage scenarios, a destination
operand of an instruction refers to a DSR containing an
instance of a DSD in accordance with Fabric Output Data
Structure Descriptor 2120.

[0645] Fabric Output Data Structure Descriptor 2120
comprises Length 2121, UTID (Microthread Identifier)
2122, UE (Microthread Enable) 2123, SW (SIMD Width)
2124, Color 2126, C (Output Control Bit) 2127, Index Low
2128.1, Type 2129, SS (Single Step) 2130, SA (Save
Address/Conditional Single Step Mode) 2131, WLI (Wave-
let Index Select) 2132, Index High 2128.2, and AC (Activate
Color) 2125.

[0646] In some embodiments, the elements of Fabric
Output Data Structure Descriptor 2120 (Length 2121, UTID
2122, UE 2123, SW 2124, SS 2130, SA 2131, and AC 2125)
are respectively similar in function and/or operation with
respect to the elements of Fabric input Data Structure
Descriptor 2100 (Length 2101, UTID 2102, UE 2103, SW
2104, SS 2110, SA 2111, and AC 2105).

[0647] In some embodiments, Color 2126 comprises a
5-bit field specifying the fabric color used to transmit
wavelets associated with the fabric vector.

[0648] In some embodiments, C (Output Control Bit)
2127 comprises a 1-bit field specifying whether a wavelet is
a control wavelet. If C 2127 is set, then any wavelets created
based on the DSD are control wavelets (e.g., Control Bit
1320 of FIG. 13A is set).

[0649] In some embodiments, Index Low 2128.1 com-
prises a 3-bit field and Index High 2128.2 comprises a 3-bit
field. The concatenation of Index Low 2128.1 and Index
High 2128.2 is collectively referred to as Index 2128. In
some scenarios, Index 2128 is used to form an index for a
wavelet (e.g., Index 1321 of FIG. 13A).

[0650] Insomeembodiments, Type 2129 comprises a 3-bit
field specifying a data structure type and/or how to interpret
other fields of Fabric Output Data Structure Descriptor
2120. Type 2129 is “0” for all instances of Fabric Output
Data Structure Descriptor 2120.

[0651] Insome embodiments, WLI (Wavelet Index Select)
2132 comprises a 1-bit field specifying in part the index of
the fabric vector. In some scenarios, if WLI 2132 is ““1”, then
the index is the value from a register (e.g., GPR4 of RF 842).
In some scenarios, if WLI 2132 is “0”, then the index is a
zero-extension to 16-bits of Index 2128.

[0652] FIG. 21C illustrates selected details of an embodi-
ment of'a 1D Memory Vector Data Structure Descriptor (aka
1D Memory Vector DSD), as 1D Memory Vector Data
Structure Descriptor 2140. In some embodiments, 1D
Memory Vector Data Structure Descriptor 2140 describes a
one-dimensional memory vector stored in the memory, as
well as various parameters relating to processing of the
memory vector. In various embodiments and/or usage sce-
narios, any one or more of a source0 operand, a sourcel

US 2018/0314941 Al

operand, and a destination operand of an instruction refer to
respective DSRs containing respective instances of DSDs in
accordance with 1D Memory Vector Data Structure Descrip-
tor 2140.

[0653] 1D Memory Vector Data Structure Descriptor 2140
comprises Length 2141, Base Address 2142, Type 2149, SS
(Single Step) 2150, SA (Save Address/Conditional Single
Step Mode) 2151, WLI (Wavelet Index Select) 2152, and
Stride 2153.

[0654] In some embodiments, some of the elements of 1D
Memory Vector Data Structure Descriptor 2140 (Length
2141, SS 2150, and SA 2151) are respectively similar in
function and/or operation with respect to some of the
elements of Fabric Input Data Structure Descriptor 2100
(Length 2101, SS 2110, and SA 2111). In some scenarios, if
the length of the memory vector is more than 15-bits, then
4D Memory Vector Data Structure Descriptor 2140 is used.
[0655] In some embodiments, Base Address 2142 com-
prises a 15-bit integer specifying the base address of the
memory vector.

[0656] Insomeembodiments, Type 2149 comprises a 3-bit
field specifying a data structure type and/or how to interpret
other fields of 1D Memory Vector Data Structure Descriptor
2140. Type 2149 is “1” for all instances of 1D Memory
Vector Data Structure Descriptor 2140.

[0657] Insomeembodiments, WLI (Wavelet Index Select)
2152 comprises a 1-bit field specifying in part the index of
the vector. If WLI 2152 is “0”, then the index is 0. In some
scenarios, if WLI 2152 is “1”, then the index is the value
from a register (e.g., GPR4 of RF 842) or the index of a
sparse wavelet (e.g., Index 1321 of FIG. 13A).

[0658] In some embodiments, Stride 2153 comprises a
9-bit signed integer specifying the stride of the vector. In
some scenarios, Base Address 2142, an index specified by
WLI 2153, and Stride 2153 enable calculating addresses of
data elements in a 1D memory vector. The address of the
first data element in the 1D memory vector is Base Address
2142+ the index specified by WLI 2153. The address of the
next data element in the 1D vector is the address of the first
data element+Stride 2153. For example, Base Address 2142
is 136, WLI 2153 is 1, GPR4 holds the value 6, Stride 2153
is -2, and Length 2141 is 10, then the memory vector
comprises data located at addresses {142, 140, 138, . . .,
124}. In some scenarios, if the stride of the memory vector
is more than 9-bits, then 4D Memory Vector Data Structure
Descriptor 2140 is used.

[0659] FIG. 21D illustrates selected details of an embodi-
ment of a 4D Memory Vector Data Structure Descriptor (aka
4D Memory Vector DSD), as 4D Memory Vector Data
Structure Descriptor 2160. In some embodiments, 4D
Memory Vector Data Structure Descriptor 2160, in conjunc-
tion with 4D Memory Vector Extended Data Structure
Descriptor 2240 of FIG. 22B, describe a 4-dimensional
memory vector stored in the memory, as well as various
parameters relating to processing of the memory vector. In
some embodiments, 4D Memory Vector Data Structure
Descriptor 2160, in conjunction with 4D Memory Vector
Extended Data Structure Descriptor 2240 of FIG. 22B,
describe a two-dimensional or three-dimensional memory
vector stored in the memory, as well as various parameters
relating to processing of the memory vector. In various
embodiments and/or usage scenarios, any one or more of a
source(operand, a sourcel operand, and a destination
operand of an instruction refer to respective DSRs contain-

Nov. 1, 2018

ing respective instances of DSDs in accordance with 4D
Memory Vector Data Structure Descriptor 2160.

[0660] 4D Memory Vector Data Structure Descriptor 2160
comprises Length Lower Bits 2161.1, Base Address 2162,
Type 2169, SS (Single Step) 2170, SA (Save Address/
Conditional Single Step Mode) 2171, WLI (Wavelet Index
Select) 2172, and Length Upper Bits 2161.2.

[0661] In some embodiments, some of the elements of 4D
Memory Vector Data Structure Descriptor 2160 (Base
Address 2162, SS 2170, SA 2171, and WLI 2172) are
respectively similar in function and/or operation with
respect to 1D Memory Vector Data Structure Descriptor
2140 (Base Address 2142, SS 2150, SA 2151, and WLI
2152).

[0662] In some embodiments, Lower Bits 2161.1 com-
prises a 15-bit field and Length Upper Bits 2161.2 comprises
a 9-bit field. The concatenation of Lower Bits 2161.1 and
Length Upper Bits 2161.2 is collectively referred to (and
illustrated as) Length 2161 (a 24-bit field) interpreted in
conjunction with 4D Memory Vector Extended Data Struc-
ture Descriptor 2240.

[0663] Insomeembodiments, Type 2169 comprises a 3-bit
field specifying an extended DSR (XDSR), storing, e.g., an
extended DSD (XDSD). The XDSD specifies and describes
one of: a circular memory buffer (e.g., Circular Memory
Buffer Extended Data Structure Descriptor 2210 of FIG.
22A) and a four-dimensional memory vector (e.g., 4D
Memory Vector Extended Data Structure Descriptor 2240 of
FIG. 22B).

[0664] FIG. 21E illustrates selected details of an embodi-
ment of a Circular Memory Buffer Data Structure Descriptor
(aka Circular Memory Buffer DSD), as Circular Memory
Buffer Data Structure Descriptor 2180. In some embodi-
ments, Circular Memory Buffer Data Structure Descriptor
2180, in conjunction with Circular Memory Buffer Extended
Data Structure Descriptor 2210, describes one of: a circular
buffer of data elements stored in the memory and a FIFO of
data elements stored in the memory; as well as various
parameters relating to processing of the data elements. In
various embodiments and/or usage scenarios, any one or
more of a source0 operand, a sourcel operand, and a
destination operand of an instruction refer to respective
DSRs containing respective instances of DSDs in accor-
dance with Circular Memory Buffer Data Structure Descrip-
tor 2180.

[0665] Circular Memory Buffer Data Structure Descriptor
2180 comprises Length 2181, Base Address 2182, FW
(FIFO Wrap Bit) 2188, Type 2189, SS (Single Step) 2190,
SA (Save Address/Conditional Single Step Mode) 2191,
WLI (Wavelet Index Select) 2192, and SW (SIMD Width)
2184. In some embodiments, a circular memory buffer
access always has an index of zero and a stride of one.

[0666] In some embodiments, some of the elements of
Circular Memory Buffer Data Structure Descriptor 2180
(Length 2181, Base Address 2182, SS 2190, and SA 2191)
are respectively similar in function and/or operation with
respect to some of the elements of 1D Memory Vector Data
Structure Descriptor 2140 (Length 2141, Base Address
2142, SS 2150, and SA 2151). In some embodiments, Type
2189 is similar in function and/or operation to Type 2169 of
4D Memory Vector Data Structure Descriptor 2160. In some
embodiments, SW 2184 of Circular Memory Buffer Data

US 2018/0314941 Al

Structure Descriptor 2180 is similar in function and/or
operation to SW 2104 of Fabric Input Data Structure
Descriptor 2100.

[0667] In some embodiments, FW (FIFO Wrap Bit) 2188
comprises a 1-bit field enabling distinguishing between a
full FIFO and an empty FIFO. FW (FIFO Wrap Bit) 2188 is
toggled when an access wraps around the address range of
the FIFO.

[0668] Insome embodiments, WLI 2192 has no impact on
the index of a circular buffer.

[0669] FIG. 22A illustrates selected details of an embodi-
ment of a Circular Memory Buffer Extended Data Structure
Descriptor, as Circular Memory Buffer Extended Data
Structure Descriptor 2210. Circular Memory Buffer
Extended Data Structure Descriptor 2210 comprises Type
2211, Start Address 2212, End Address 2213, FIFO 2214,
Push (Activate) Color 2215, and Pop (Activate) Color 2216.

[0670] Insomeembodiments, Type 2211 comprises a 1-bit
field specifying the type of data structure. Type 2211 is “1”
for all instances of Circular Memory Buffer Extended Data
Structure Descriptor 2210.

[0671] In some embodiments, Start Address 2212 com-
prises a 15-bit field specifying the start address of the
circular buffer in the memory. In some embodiments, End
Address 2213 comprises a 15-bit integer specifying the end
address of the circular buffer in the memory. When an
address is incremented (e.g., by the stride to initiate the next
access) and equals End Address 2213, the address is reset to
Base Address 2212, thereby providing circular access
behavior.

[0672] In some embodiments, FIFO 2214 comprises a
1-bit field specifying whether the circular buffer is a FIFO.
If FIFO 2214 is “0”, then the circular buffer is not a FIFO.
If FIFO 2214 is <17, then the circular buffer is a FIFO.

[0673] In some embodiments, Push (Activate) Color 2215
and Pop (Activate) Color 2216 comprise 6-bit fields speci-
fying colors to activate (e.g., via an activate operation). In
some embodiments, Push (Activate) Color 2215 and Pop
(Activate) Color 2216 are enabled to specify ones of: a local
color and a fabric color.

[0674] In various embodiments, two circular memory buf-
fer DSRs are enabled to describe a FIFO of data elements
stored in a same region of the memory. A destination DSR
(e.g., DDSR8) describes a write pointer of the FIFO, and a
sourcel DSR (e.g., SIDSRS) describes a read pointer of the
FIFO. In some embodiments, destination and sourcel DSRs
have a same identifier. In various embodiments, only some
of DSRs 846 are enabled to describe FIFOs, (e.g., DDSRS8-
DDSR11 and S1DSR8-S1DSR11).

[0675] FW (FIFO Wrap Bit) 2188 of the two DSRs
enables detecting if a FIFO is full or empty. When a FIFO
is used as a destination, Base Address 2182 and FW 2188 of
the associated SIDSR is read and compared to values from
the DDSR. If Base Address 2182 of the two DSRs are the
same, but FW 2188 are different, then the FIFO is full. When
a FIFO is used as a source, Base Address 2182 and FW 2188
of the associated DDSR are read and compared to values
from the SIDSR. If Base Address 2182 of the two DSRs are
the same and FW 2188 are the same, then the FIFO is empty.
In some scenarios (e.g., microthreading), in response to a
read accessing an empty FIFO or a write accessing a full
FIFO, processing is switched to an instruction in another
task until the FIFO is respectively not empty or not full.

Nov. 1, 2018

[0676] FIG. 22B illustrates selected details of an embodi-
ment of a 4D Memory Vector Extended Data Structure
Descriptor, as 4D Memory Vector Extended Data Structure
Descriptor 2240. In some embodiments, 4D Memory Vector
Extended Data Structure Descriptor 2240 partially describes
a four-dimensional vector of data elements stored in the
memory. 4D Memory Vector Extended Data Structure
Descriptor 2240 comprises Type 2241, Dimensions 2242,
DF (Dimension Format) 2243, Select Stride 1 2244.1, Select
Stride 2 2244.2, Select Stride 3 2244.3, Select Stride 4
2244 .4, and Stride 2245. In some embodiments, 4D Memory
Vector Extended Data Structure Descriptor 2240 comprises
51 bits.

[0677] Insomeembodiments, Type 2241 comprises a 1-bit
field specifying the type of data structure. Type 2241 is “0”
for all instances of 4D Memory Vector Extended Data
Structure Descriptor 2240.

[0678] In some embodiments, Dimensions 2242 com-
prises a 20-bit field used to initialize the length of the next
dimension of the vector.

[0679] In some embodiments, DF (Dimension Format)
2243 comprises a 5-bit field that, in conjunction with Length
2161 of FIG. 21D, specifies the length of each dimension of
the N-dimensional vector. Conceptually, Length 2161 is
divided into 6 consecutive 4-bit nibbles and each dimension
is expressed using one or more of the nibbles. Bits are set in
DF 2243 to indicate demarcations between the dimensions
in Length 2161. For example, DF 2242 is “01110” (binary),
indicating that the first dimension is expressed using two
nibbles, e.g., bits [7:0], and represents a length between 1
and 128. Similarly, the second dimension is expressed using
one nibble, e.g., bits [11:8], and represents a length between
1 and 4. An N-dimension vector is represented by setting
(N-1) bits in DF 2242, and only the last dimension uses
more than four nibbles. In some embodiments and/or usage
scenarios, a one-dimensional vector is described using this
format, e.g., if the vector is too long for Length 2141 (of
FIG. 21C) to describe. In some embodiments and/or usage
scenarios, a two-dimensional or three-dimensional vector is
described using this format.

[0680] In some embodiments, Select Stride 1 2244.1 com-
prises a 1-bit field specifying a stride for the first dimension
of the vector. If Select Stride 1 2244.1 is “0”, then the stride
is 1. If Select Stride 1 2244.1 is “1”, then the stride is
specified by Stride 2245.

[0681] In some embodiments, Select Stride 2 2244.2 com-
prises a 3-bit field and encodes a stride for the second
dimension of the vector. If Select Stride 2 2244 .2 is “0”, then
the stride is 1. If Select Stride 2 2244 .2 is “1”, then the stride
is specified by Stride 2245. If Stride Select 2 2244.2 is 2-7,
then the stride is specified by a corresponding (DSR) stride
register (e.g., of the six stride registers of DSRs 846.
[0682] In some embodiments, Select Stride 3 2244.3 and
Select Stride 4 2244.4 comprise respective 3-bit fields. In
some embodiments, Select Stride 3 2244.3 and Select Stride
4 2244 4 are respectively similar in function and/or opera-
tion with respect to the third and fourth dimension as Select
Stride 2 2244 .2 is with respect to the second dimension.
[0683] In some embodiments, Stride 2245 comprises a
15-bit field specifying a stride of the vector in the memory.
In some scenarios, Stride 2245 enables using a longer stride
for a one-dimensional vector than Stride 2153 (of FIG. 21C).
[0684] FIG. 23 illustrates selected details of an embodi-
ment of accessing operands in accordance with data struc-

US 2018/0314941 Al

ture descriptors, as Data Structure Descriptor Flow 2300. In
some embodiments, actions of Data Structure Descriptor
Flow 2300 are performed by a CE (e.g., CE 800).

[0685] Accessing a source operand via a data structure
descriptor begins (Start 2301) by initializing one or more
DSRs of a CE of a PE with respective DSDs (Set DSR(s)
2302) and optionally initializing respective XDSDs and/or
stride values of the CE ((optional) Set XDSR(s) 2305). In
some embodiments, the initialized DSRs (as well as the
optionally initialized XDSRs and stride registers holding the
stride values) are initialized by instructions that move data
from memory to the DSRs. Subsequently, the CE fetches
and decodes an instruction (e.g., FMACH, MOV, or LT16)
comprising one or more operands specified by the initialized
DSRs and optionally one or more XDSRs and/or stride
registers (Fetch/Decode Instruction with DSR(s) 2303). In
some embodiments, the operand type fields of the instruc-
tion specify whether an operand is specified by a DSR.
[0686] The CE reads one or more DSDs from the DSRs
(Read DSR(s) 2304) and determines one or more of: the type
of data structure, the source of the data element(s), whether
multiple data elements are read together (e.g., for a SIMD
operation), and the total number of data elements for each
operand. Depending on the determination, for each DSD
read, an XDSR and one or more stride registers are also
optionally read ((optional) Read XDSR(s) 2306), as
described with respect to FIG. 24. In some scenarios, DSRs
are read for one or more of: a source0 operand, a sourcel
operand, and a destination operand, and are identified by
respective operand fields of the instruction obtained in
action 2303. In some embodiments and/or usage scenarios,
any one or more of the DSRs, the XDSRs and the stride
registers are read entirely or partially in parallel, and in other
embodiments and/or usage scenarios, any one or more of the
DSRs, the XDSRs and the stride registers are read entirely
or partially sequentially.

[0687] Based upon the DSDs obtained in action 2304 (and
optional XDSRs and stride values obtained in action 2306),
the CE reads one or more source data element(s) from the
fabric and/or memory (Read (Next) Source Data Element(s)
from Queue/Memory 2310). For each source specified by
the instruction obtained in action 2303 (e.g., each of source0
and sourcel), the CE reads sufficient elements for an itera-
tion of the operation specified in the instruction, and in
accordance with SIMD width information in the DSDs. Data
element(s) from the fabric (e.g., a source data structure is a
fabric vector) are accessed via one or more queues of the CE.
In some embodiments and/or usage scenarios, the CE also
reads data element(s) from registers.

[0688] After reading the source data element(s), the CE
performs the operation using the data element(s) as inputs
(Perform (Next) Operation(s) on Data Element(s) 2311).
The operation is specified by the instruction obtained in
action 2303 (e.g., a multiply-accumulate operation for an
FMACH instruction, a move operation for a MOV instruc-
tion, or a less than integer comparison for LT16).

[0689] In some scenarios, the operation (e.g., a multiply-
accumulate operation or a move operation) produces one or
more output data element(s). The CE writes the output data
element(s) to the fabric or the memory (Write (Next) Des-
tination Data Element(s) to Queue/Memory 2312), based
upon the DSDs obtained in action 2304 (and optional
XDSRs and stride values obtained in action 2306). Data
element(s) sent to the fabric (e.g., the destination data

Nov. 1, 2018

structure is a fabric vector) are formed into wavelets and
transmitted to the fabric via the router of the PE. In some
other scenarios, there are no output data elements (e.g., some
comparison operations).

[0690] After writing any results from the operation, the
CE determines if there are additional data element(s) to
process (More Data Element(s)? 2313). In some embodi-
ments, the DSD specifies the total number of data elements
to access (e.g., the length of the vector) and the CE compares
the number of data element(s) that have been accessed (e.g.,
tracked via a counter) to the total number of data element(s)
specified by the length. If there are additional data element
(s) to process, the CE repeats actions 2310-2313 until all
data element(s) have been processed and flow concludes
(End 2316).

[0691] In various embodiments and/or usage scenarios, all
or any portions of any one or more of elements of Data
Structure Descriptor Flow 2300 (e.g., any one or more
actions of 2302-2312) correspond conceptually to and/or are
related conceptually to operations performed by and/or
elements of a CE, e.g., CE 800.

[0692] As an example, the source DSRs holding source
DSDs (associated with Set DSR(s) 2302 and Read DSR(s)
2304) are one or more of DSRs 846 (e.g., SODSRs, SIDSRs,
DDSRs, XDSRs, and stride registers). In some embodi-
ments, CE 800 performs Set DSR(s) 2302 responsive to
instruction(s) that write DSDs into DSRs, e.g., LDSOWDS,
LDS1WDS, LDXDS, and LDSR.

[0693] As another example, CE 800 performs Fetch/De-
code Instruction with DSR(s) 2303. In various embodi-
ments, PC 834 and I-Seq 836 fetch instructions from
Memory 854 and Dec 840 decodes fetched instructions. In
some embodiments, instructions are formatted in accordance
with one of: Multiple Operand Instruction 2510 of FIG.
25A, One Source, No Destination Operand Instruction 2520
of FIG. 25B, and Immediate Instruction 2530 of FIG. 25C.
In some embodiments, decoding includes detecting that an
instruction operand is specified by a DSD, e.g., that the value
of Operand 1 Type 2514.1 is “1”.

[0694] As another example, CE 800 performs Read DSR
(s) 2304 in response to an instruction with one or more
operands specified by a DSR. In various embodiments,
D-Seq 844 reads the DSR(s) specified by the instruction
obtained in action 2303 from DSRs 846. In some embodi-
ments, DSDs read from the DSRs are formatted in accor-
dance with one or more of: Fabric Input Data Structure
Descriptor 2100 of FIG. 21A, Fabric Output Data Structure
Descriptor 2200 of FIG. 21B, 1D Memory Vector Data
Structure Descriptor 2140 of FIG. 21C, 4D Memory Vector
Data Structure Descriptor 2160 of FIG. 21D, and Circular
Memory Buffer Data Structure Descriptor 2180 of FIG. 21E.
In some embodiments and/or usage scenarios, D-Seq 844,
e.g., responsive to DSDs having Type 2169 or Type 2189
specifying an XDSR, performs (optional) Read XDSR(s)
2306. In various embodiments, XDSDs read from the
XDSRs are formatted in accordance with one of: Circular
Memory Extended Buffer Data Structure Descriptor 2180 of
FIG. 22A and 4D Memory Vector Extended Data Structure
Descriptor 2160 of FIG. 22B.

[0695] As another example, CE 800 performs Read (Next)
Source Data Element(s) from Queue/Memory 2310 based
upon the source DSD(s) read in action 2304 and optionally
XDSD(s) read in action 2306. In some scenarios, a source
DSD specifies (e.g., via Type 2149) that an operand origi-

US 2018/0314941 Al

nates from memory, and D-Seq 844 reads data element(s)
from D-Store 848 or Memory 854 at address(es) specified by
the DSD (e.g., based in part upon one or more of: Base
Address 2142, WLI 2152, and Stride 2153). In some sce-
narios, a source DSD specifies (e.g., via Type 2109) that an
operand originates from the fabric and CE 800 reads data
element(s) from one of Qs 897. In some embodiments and/or
usage scenarios, data elements are directly transmitted from
one of Qs 897 to Data Path 852. In other embodiments
and/or usage scenarios, data elements are transmitted from
one of Qs 897 to RF 842 and from RF to Data Path 852. In
some embodiments, the one of Qs 897 is implicitly specified
by portions of the DSD (e.g., one or more of: UTID 2102,
SC 2112, and SQ 2113). In some scenarios, the CE reads
from the queue associated with the color of the current task
(e.g., the task associated with the instruction obtained in
action 2303). In some scenarios (e.g., SQ 2113 is “1”), the
CE reads from a queue specified by UTID 2102. In some
scenarios (e.g., SC 2112 is “1”), the CE reads from a queue
associated with the color specified by UTID 2102 concat-
enated with CH 2114. In some scenarios, the CE reads one,
two, or four data elements from the specified queue based
upon SW 2104.

[0696] In some embodiments and/or usage scenarios,
when CE 800 attempts to read more data element(s) than are
available in the specified queue of Qs 897, or alternatively
attempts to read from an empty FIFO (e.g., as implemented
in accordance with a DSD in accordance with FIG. 21E),
then CE 800 stalls. In some embodiments and/or usage
scenarios (e.g., microthreading), Picker 830 is enabled to
select a different task from Qs 897 while waiting for the data
element(s), thereby enabling CE 800 to avoid stalling.
[0697] As another example, CE 800 performs Perform
(Next) Operation(s) on Data Element(s) 2311. In some
embodiments, Data Path 852 uses the data element(s) read
in action 2310 as inputs to the operation specified by the
instruction obtained in action 2303. In some scenarios (e.g.,
a computational operation), action 2311 produces output
data element(s), while in other scenarios (e.g., a comparison
operation), action 2311 produces no output data element. In
some embodiments, Data Path 852 is enabled to perform
more than one operation simultaneously, e.g., performing
two or four multiply-accumulate operations simultaneously
using SIMD execution resources.

[0698] As another example, CE 800 performs Write
(Next) Source Data Element(s) to Queue/Memory 2312
based upon the destination DSD read in action 2304 and
optionally XDSD(s) read in action 2306. In some scenarios,
the destination DSD specifies (e.g., via Type 2149) that an
operand is destined for memory, and D-Seq 844 writes data
element(s) to D-Store 848 or Memory 854 at address(es)
specified by the destination DSD (e.g., based in part upon
one or more of: Base Address 2142, WLI 2152, and Stride
2153).

[0699] In various embodiments and/or usage scenarios,
portions of action 2312 (e.g., writing destination data ele-
ments to the fabric) correspond conceptually to and/or are
related conceptually to Provide Data Element(s) as Wavelet
to Router 1406 of FIG. 14. In some scenarios, a destination
DSD specifies (e.g., via Type 2129) that an operand is sent
to the fabric and CE 800 creates wavelet(s) (e.g., based in
part upon Fabric Output Data Structure Descriptor 2120)
from the data element(s) and transmits them via On Ramp
860 to Router 600 (of FIG. 6) to the fabric. In some

Nov. 1, 2018

scenarios, the CE transmits one, two, or four data elements
as wavelets, based upon SW 2124 of the destination DSD.
[0700] In some embodiments and/or usage scenarios,
when CE 800 attempts to transmit more wavelets than
resources available in Router 600 (e.g., there are insufficient
resources in Data Queues 650 of FIG. 6), or alternatively
attempts to write to a full FIFO (e.g., as implemented in
accordance with a DSD in accordance with FIG. 21E), then
CE 800 stalls. In some embodiments and/or usage scenarios
(e.g., microthreading), Picker 830 is enabled to select a
different task from Qs 897 while waiting for more resources,
thereby enabling CE 800 to avoid stalling.

[0701] As another example, CE 800 performs action 2313.
In some embodiments, D-Seq 844 determines how many
data element(s) have been processed (e.g., by incrementing
a counter for each data element) and compares this against
the length of the vector (e.g., Length 2101).

[0702] FIG. 24 illustrates selected details of an embodi-
ment of decoding a data structure descriptor, as Data Struc-
ture Descriptor Decode Flow 2400. In various embodiments
and/or usage scenarios, Memory Data Structure Descriptor
Flow 2400 is a conceptual representation of all or any
portions of actions 2304, 2306, 2310, and 2312 (of FIG. 23)
as performed for each DSR describing a fabric or a memory
vector. In summary, FIG. 23 illustrates fetching and decod-
ing an instruction comprising one or more operands speci-
fied by initialized DSRs, reading the DSRs to obtain and
decode corresponding DSDs, reading (next) source data
elements in accordance with the DSDs, performing an
operation on the source data elements, writing output data
elements of the operation in accordance with the DSDs, and
iterating back to reading the next source data elements until
complete. FIG. 24 illustrates, for fabric vectors (Fabric
Vector 2410) and memory vectors (Memory Vector 2420),
further details regarding decoding the DSDs obtained from
the DSRs, as well as optionally reading one or more XDSRs
and stride registers to obtain and decode corresponding
XDSDs and stride values, to determine memory access
patterns used to access data elements of the memory vectors
of the instruction (e.g., any one or more of source0, sourcel,
and destination). Conceptually, the actions illustrated in
FIG. 24 are performed for each DSD obtained via action
2304 of FIG. 23. In some embodiments, actions of Memory
Data Structure Descriptor Flow 2400 are performed by a CE
(e.g., CE 800).

[0703] Decoding a DSD (e.g., as obtained via action 2304
of FIG. 23) begins (Start 2401) by the CE determining
whether the DSD corresponds to a fabric vector
(Type=Fabric? 2411), e.g., in accordance with FIG. 21A or
FIG. 21B. If so, then accesses of the operand described by
the DSD proceed as a fabric vector using the DSD (Access
via DSD 2412), e.g., if the operand is a source (FIG. 21A),
then action 2310 (of FIG. 23) reads from the fabric in
accordance with the DSD, and if the operand is a destination
(FI1G. 21B), then action 2312 (of FIG. 23) writes to the fabric
in accordance with the DSD.

[0704] If the DSD does not correspond to a fabric vector,
then the DSD corresponds to a memory vector. The CE then
determines whether the DSD corresponds to a 1D memory
vector (Type=XDSR? 2421), e.g., in accordance with FIG.
21C. If so, then accesses of the operand described by the
DSD proceed as a 1D memory vector using the DSD
(Access 1D via DSD 2427). E.g., if the operand is a source,
then action 2310 reads the source from the memory in

US 2018/0314941 Al

accordance with a 1D memory vector described by the DSD,
and if the operand is a destination, then action 2312 writes
to the memory in accordance with a 1D memory vector
described by the DSD. Each iteration of data elements in
FIG. 23 (actions 2310-2313) advances the operand memory
addresses in accordance with the 1D memory vector
described by the DSD.

[0705] If the DSD does not correspond to a 1D memory
vector, then the DSD corresponds to either a 4D memory
vector (e.g., in accordance with FIG. 21D) or a circular
buffer (e.g., in accordance with FIG. 21E). The CE reads an
XDSR specified by the DSD (Read XDSR Specified via
DSD 2422, also conceptually corresponding to (optional)
Read XDSR(s) 2306 of FIG. 23) to obtain an XDSD. The
XDSR is specified by Type 2169 (of FIG. 21D) or Type 2189
(of FIG. 21E).

[0706] The CE then determines whether the XDSD speci-
fies a 4D memory vector (e.g., in accordance with FIG.
22B). If so, then the CE optionally reads one or more stride
registers ((optionally) Read Stride Register(s) 2424, also
conceptually corresponding to (optional) Read XDSR(s)
2306 of FIG. 23), as optionally specified by the XDSD.
Accesses of the operand described by the DSD, the XDSD,
and any optional stride values (obtained from the stride
registers) proceed as a 4D memory vector using the DSD,
the XDSD, and the optional stride values (Access 4D via
XDSD 2428). E.g., if the operand is a source, then action
2310 reads the source from the memory in accordance with
the 4D memory vector, and if the operand is a destination,
then action 2312 writes to the memory in accordance with
the 4D memory vector. Each iteration of data elements in
FIG. 23 (actions 2310-2313) advances the operand memory
addresses in accordance with the 4D memory vector
described by the DSD.

[0707] If the XDSD does not correspond to a 4D memory
vector, then the XDSD corresponds to a circular buffer (e.g.,
in accordance with FIG. 22A). Accesses of the operand
described by the DSD and the XDSD proceed as a circular
buffer using the DSD and the XDSD (Access Circular Buffer
via XDSD 2429). E.g., if the operand is a source, then action
2310 reads the source from the memory in accordance with
the circular buffer, and if the operand is a destination, then
action 2312 writes to the memory in accordance with the
circular buffer. Each iteration of data elements in FIG. 23
(actions 2310-2313) advances the operand memory
addresses in accordance with the circular buffer described by
the DSD.

[0708] In various embodiments, D-Seq 844 performs
Type=Fabric? 2411 and/or Type=XDSD? 2421 based upon
a DSD read in action 2304 (of FIG. 23). In some embodi-
ments, a type field of the DSD (e.g., Type 2109 of FIG. 21A,
Type 2129 of FIG. 21B, Type 2149 of FIG. 21C, Type 2169
of FIG. 21D, and Type 2189 of FIG. 21E) determines if the
data structure is one of: a fabric vector (e.g., the Type="-0"),
a 1D vector (e.g., the Type=<1"), and an XDSD type (e.g.,
the Type=2-7"). In various embodiments (e.g., the
Type="2-7”), the value of the type field specifies which
XDSR of DSRs 846 to read for action 2422. In some
embodiments, D-Seq 844 performs action 2422 and receives
the XDSD from DSRs 846. In some other embodiments,
DSRs 846 performs actions 2421 and 2422 and transmits the
DSD and the XDSD to D-Seq 844.

Nov. 1, 2018

[0709] As another example, D-Seq 844 performs
Type=4D Vector? 2423 based upon the XDSD of action
2422. In some embodiments, the type field of the XDSD
(e.g., Type 2211 of FIG. 22A or Type 2241 of FIG. 22B) read
from the XDSR determines if the data structure is one of a
4D vector (e.g., the XDSD Type=“0") and a circular buffer
(the XDSD Type=“1").

[0710] As another example, D-Seq 844 generates memory
access(es) in accordance with action 2427 by computing the
memory address(es) based upon the DSD (e.g., of action
2304), using e.g., Base Address 2142, WLI 2152, Length
2141, and Stride 2153 of the DSD, as described elsewhere
herein. Similarly, D-Seq 844 generates memory access(es)
in accordance with action 2428 by computing the memory
address(es) based upon the DSD (e.g., of action 2404) and
XDSD of action 2422 using e.g., Base Address 2162, Length
2161, WLI 2172, Stride 2245, Stride Select 1 2244.1, and
DF 2243 of the DSD and the XDSD, as described elsewhere
herein. Similarly, D-Seq 844 generates memory access(es)
in accordance with action 2429 by computing the memory
address(es) based upon the DSD (e.g., of action 2404) and
XDSD of action 2422 using e.g., Base Address 2182, [ength
2181, WLI12192, Start Address 2212, and End Address 2213
of the DSD and the XDSD, as described elsewhere herein.

[0711] In some embodiments, D-Seq 844 sends each com-
puted address to one of D-Store 848 and Memory 854. In
response to receiving a computed address, the D-Store
and/or the Memory accesses two bytes of data at the
computed address.

Instruction Formats

[0712] Each element identifier in the description of FIGS.
25A-C having a first digit of “8” refers to an element of FIG.
8, and for brevity is not otherwise specifically identified as
being an element of FIG. 8.

[0713] FIG. 25A illustrates selected details of an embodi-
ment of a multiple operand instruction, as Multiple Operand
Instruction 2510. Multiple Operand Instruction 2510 is one
of: a two/three source, one destination operand instruction
(e.g., a multiply-add such as FMACH), a two source, no
destination operand instruction (e.g., a comparison such as
LT16), and a one source, one destination operand instruction
(e.g., a move instruction such as MOV16).

[0714] Multiple Operand Instruction 2510 comprises vari-
ous fields: Instruction Type 2511, Opcode 2512, Operand 0
Encoding 2513, Operand 1 Encoding 2514, and Terminate
2515. Operand 0 Encoding 2513 comprises Operand 0 Type
2513.1 and Operand 0 2513.2. Operand 1 Encoding 2514
comprises Operand 1 Type 2514.1 and Operand 1 2514.2. In
some embodiments, Multiple Operand Instruction 2510
comprises 20 bits.

[0715] In some embodiments, the value of Instruction
Type 2511 distinguishes between different types of instruc-
tions (e.g., two/three source, one destination and one source,
and one destination instruction types) according to the table
following. In various embodiments, the value of Opcode
2512 specifies a particular operation (e.g., multiply, add, or
subtract). The length of Opcode 2512 varies between dif-
ferent types of instructions as described in the table follow-
ing.

US 2018/0314941 Al

Nov. 1, 2018

Value of Instruction Length of

Instruction Family Type 2511 Opcode 2522
Two/three source, one destination 10 5 bits
Two source, no destination 1110 4 bits
One source, one destination 110 5 bits

[0716] In some embodiments, Operand 0 Encoding 2513
describes a source and/or destination operand, according to
the table following. In some embodiments, Operand 1
Encoding 2714 describes a source operand.

Operand 0 Operand 1
Instruction Family Encoding 2513 Encoding 2514
Two/three source, one destination Source0 and Sourcel
destination
Two source, no destination Source0 Sourcel
One source, one destination Destination Sourcel

[0717] In some embodiments, Operand 0 2513.2 and
Operand 1 2514.2 comprise respective 4-bit fields. In some
embodiments, Operand 0 Type 2513.1 and Operand 1 Type
2514.1 comprise respective 2-bit fields and respectively
determine how to interpret Operand 0 2513.2 and Operand
1 2514.2. For a two/three source operand, one destination
operand instruction, Operand 0 Type 2513.1 is interpreted
according to the table following.

Value of
2513.1 Operand 0 Encoding 2513
0 Source0 is SODSR [Operand 0 2513.2], destination is
SODSR [Operand 0 2513.1]
1 Source0 is SODSR [Operand 0 2513.2], destination is
DDSR [Operand 0 2513.1]
2 Source0 is GPR [Operand 0 2513.2], destination is
GPR [Operand 0 2513.1]
3 Source0 is GPR [Operand 0 2513.2], destination is
DDSR [Operand 0 2513.1] if Operand 1
Type 2514.1 is 0, destination is GPR [0] otherwise
[0718] Forexample, if the value of Operand O Type 2513.1

is “1” and the value of Operand 0 2513.2 is “4”, then
Operand 0 Encoding 2513 specifies that the source0 operand
is a vector described by SODSR[4] and the destination
operand is a vector described by DDSR[4].

[0719] For a two source operand, no destination operand
instruction, Operand 0 Type 2513.1 is interpreted according
to the table following.

Value of 2513.1 Operand 0 Encoding 2513

0 Source0 is SODSR [Operand 0 2513.2]
1 Source0 is GPR [Operand 0 2513.2]

[0720] Forexample, if the value of Operand O Type 2513.1
is “0” and the value of Operand 0 2513.2 is “4”, then
Operand 0 Encoding 2513 specifies that the source0 operand
is a vector described by SODSR[4].

[0721] For a one source operand, one destination operand
instruction, Operand 0 Type 2513.1 is interpreted according
to the table following.

Value of 2513.1 Operand 0 Encoding 2513

0 Destination is DDSR [Operand 0 2513.2]
1 Destination is GPR [Operand 0 2513.2]

[0722] Forexample, if the value of Operand 0 Type 2513.1
is “0” and the value of Operand 0 2513.2 is “4”, then
Operand 0 Encoding 2513 specifies that the destination
operand is a vector described by DDSR[4].

[0723] For Multiple Operand Instruction 2510, Operand 1
Type 2514.1 is interpreted according to the table following.

Value of

2514.1 Operand 1 Encoding 2514
0 Sourcel is SIDSR [Operand 1 2514.2]
1 Sourcel is the data in memory at the address specified by

GPR [6]
2 Sourcel is GPR [Operand 1 2514.2]
3 Sourcel is an immediate
[0724] For example, if the value of Operand 0 Type 2513.1

is “0” and the value of Operand 0 2513.2 is “4”, then
Operand 0 Encoding 2513 specifies that the destination
operand is a vector described by DDSR[4].

[0725] In various embodiments, a sourcel operand that is
an immediate specifies one of: several predetermined values
(e.g., 0, 1, and -1) and a pseudo-random number generated
by an LFSR. For example, if the value of Operand 1 Type
2514.1 is “3” and the value of Operand 1 2514.2 is “8”, then
Operand 1 Encoding 2514 specifies a PRNG generated by an
LFSR.

[0726] Insome embodiments, Terminate 2515 comprises a
1-bit field specifying that the instruction is the last instruc-
tion in a task. When the instruction finishes execution, the
task is terminated, enabling selection and execution of a new
task (e.g., via Terminate 812 and Picker 830).

[0727] FIG. 25B illustrates selected details of an embodi-
ment of a one source, no destination operand instruction, as
One Source, No Destination Instruction 2520. One Source,
No Destination Instruction 2520 comprises Instruction Type
2521, Opcode 2522, Operand 1 Encoding 2523, Immediate
High 2524, and Terminate 2525. Operand 1 Encoding 2523
describes a source operand and comprises Operand 1 Type
2523.1 and Operand 1 2523.2. In some embodiments, One
Source, No Destination Instruction 2520 comprises 20 bits.
[0728] Insome embodiments, Instruction Type 2521 com-
prises four bits, “1111”, specifying that the instruction is a
one source, no destination operand instruction, and Opcode
2522 comprises a 4-bit field specitying a particular operation
(e.g., block, unblock, activate, set active PRNG, data filter,
conditional branch, and jump).

[0729] Insome embodiments, Inmediate High 2524 com-
prises a 4-bit field. In some scenarios, Immediate High 2524
concatenated with Operand 1 2523.2 forms an 8-bit imme-
diate.

[0730] In some embodiments, Operand 1 Type 2523.1
comprises a 2-bit field that determines how Operand 1
2523.2 is interpreted. If Operand 1 Type 2523.1 is “0”, then
Operand 1 Encoding 2523 specifies a vector (e.g., a fabric
vector of data elements from Qs 897, or a memory vector of
data elements in one of Memory 854 and D-Store 854) and
the value of Operand 1 2523.2 identifies which one of the 12
S1DSRs of DSRs 846 describe the vector. If Operand 1 Type

US 2018/0314941 Al

2523.1 is “17, then Operand 1 Encoding 2523 describes a
value in memory (e.g., one of Memory 854 and D-Store 848)
at an 8-bit address formed by a concatenation of Immediate
High 2524 with Operand 1 2523.2. If Operand 1 Type
2523.1 is “2”, then Operand 1 Encoding 2523 describes a
value in a register (e.g., one of RF 842) identified by the
value of Operand 1 2523.2. If Operand 1 Type 2523.1 is “3”,
then Operand 1 Encoding 2523 describes an immediate. If
Opcode 2522 specifies an operation (e.g., block, unblock, or
activate) that operates on 16-bit integer operands, then the
immediate comprises eight bits and is a concatenation of
Immediate High 2524 and Operand 1 2523.2.

[0731] Insome embodiments, Terminate 2525 comprises a
1-bit field specifying that the instruction is the last instruc-
tion in a task. When the instruction finishes execution, the
task is terminated, enabling selection and execution of a new
task (e.g., via Terminate 812 and Picker 830. If One Source,
No Destination Instruction 2520 is a conditional branch,
then the task is only terminated if the conditional branch is
not taken.

[0732] FIG. 25C illustrates selected details of an embodi-
ment of an immediate instruction, as Immediate Instruction
2530 Immediate Instruction 2530 comprises Instruction
Type 2531, Opcode 2532, Operand 0 2533.2, and Immediate
2534. In some embodiments, Immediate Low 2534.1 com-
prises a 9-bit field and Immediate High 2534.2 comprises a
1-bit field. The concatenation of Immediate Low 2534.1 and
Immediate High 2534.2 is collectively referred to (and
illustrated as) as Immediate 2534. In some embodiments,
Immediate Instruction 2520 comprises 20 bits.

[0733] Insome embodiments, Instruction Type 2531 com-
prises a 1-bit field, “0”, specifying that the instruction is an
immediate instruction, and Opcode 2532 comprises a 5-bit
field specifying a particular operation (e.g., load
sourceODSR, load sourcel DSR, load destination DSR, store
source0 DSR, store sourcel DSR, and store destination
DSR). In some scenarios, execution of an Immediate
Instruction 2530 (e.g., a load DSR instruction, and a load
XDSR instruction) loads data from one of Memory 854 and
D-Store 848 to a DSR of DSRs 846. In other scenarios,
execution of an Immediate Instruction 2530 (e.g., a store
DSR instruction, and a store XDSR instruction) stores data
from a DSR of DSRs 846 to one of Memory 854 and D-Store
848.

[0734] In some embodiments, Operand 0 2533.2 com-
prises a 4-bit field and Opcode 2532 determines how Oper-
and 0 2533.2 is interpreted. In some scenarios (e.g., if
Operand 0 2533.2 specifies an operation without a register
operand such as a jump operation), Immediate Low 2534.1,
Operand 0 2533.2, and Immediate High 2534.2 are concat-
enated to form a 14-bit immediate. In some other scenarios,
Immediate 2534 is sign extended to form a 16-bit immedi-
ate. In yet other scenarios, Immediate 2534 is sign extended
to form a 15-bit address. In yet other scenarios, Immediate
2534 is shifted one bit to the left and sign extended to form
a 15-bit address (e.g., for 32-bit data).

Deep Learning Accelerator Example Uses

[0735] In various embodiments and/or usage scenarios, as
described elsewhere herein, a deep learning accelerator,
such as a fabric of PEs (e.g., as implemented via wafer-scale
integration and as illustrated, for example, in FIG. 4) is
usable to train a neural network, and/or to perform infer-
ences with respect to a trained neural network. The training,

Nov. 1, 2018

in some circumstances, comprises determining weights of
the neural network in response to training stimuli. Various
techniques are usable for the training, such as Stochastic
Gradient Descent (SGD), Mini-Batch Gradient Descent
(MBGD), Continuous Propagation Gradient Descent
(CPGD), and Reverse CheckPoint (RCP). Following, CPGD
is contrasted with other techniques, and then each of SGD,
MBGD, CPGD, and RCP are described in more detail.
[0736] Past deep neural network training approaches (e.g.,
SGD and MBGD) have used so-called anchored-delta learn-
ing. That is, the delta derived weight updates have been
‘anchored’ or held fixed until processing of all activations
for a training set batch or a mini-batch are completed. In
some circumstances, the layer-sequential nature of
anchored-delta learning resulted in high-latency sequential
parameter updates (including for example, weight updates),
which in turn led to slow convergence. In some circum-
stances, anchored-delta learning has limited layer-parallel-
ism and thus limited concurrency.

[0737] In contrast, in some circumstances, use of a con-
tinuous propagation (aka immediate-delta) learning rule for
deep neural network training, as taught herein, provides
faster convergence, decreases the latency of parameter
updates, and increases concurrency by enabling layer-par-
allelism. Deltas computed from the immediate network
parameters use updated information corresponding to the
current parameter slope. Continuous propagation enables
layer parallelism by enabling each layer to learn concur-
rently with others without explicit synchronization. As a
result, parallelization along the depth of a network enables
more computing resources to be applied to training Paral-
lelism available in continuous propagation realizes up to a
10x wall clock time improvement, as compared to MBGD
techniques, in some usage scenarios. The continuous propa-
gation approach also enables avoiding using extra memory
to store the model parameter values for multiple vectors of
activations.

[0738] In some embodiments and/or usage scenarios, a
neural network is trained using continuous propagation of
stimuli to perform SGD. In some embodiments of training
via CPGD, RCP enables reducing the number of activations
held in memory (thus reducing the memory footprint) by
recomputing selected activations. In some scenarios, recom-
puting activations also improves the accuracy of the training
estimates for the weights. In training without RCP, every
layer of neurons receives activations during one or more
forward passes, and saves the activations to re-use for
computations performed during the one or more backward
passes associated with the forward passes (e.g., the one or
more delta, chain, and weight update passes associated with
the forward passes). In some scenarios (e.g., relatively deep
neural networks), the time between saving the activations
and the associated backward pass is relatively long and
saving all activations uses relatively more memory than
saving fewer than all the activations.

[0739] For example, only some of the layers of neurons
(e.g., every even layer) save the respective activations and
the other layers discard the respective activations (e.g., every
odd layer). The layers with saved activations (e.g., every
even layer) use the most recent weights to recompute and
transmit the recomputed activations to the layers that dis-
carded activations (e.g., every odd layer). In some scenarios,
the recomputed activations differ from the discarded acti-
vations because the most recent weights are different from

US 2018/0314941 Al

the weights that were available during the forward pass (e.g.,
one or more weight updates occurred between the forward
pass and the associated backward pass). In various embodi-
ments, the number and type of layers that save and discard
activations is selected to optimize for the desired balance of
reduced memory usage and increased computation. As one
example, every fourth layer saves activations and all other
layers discard activations. As another example, convolu-
tional layers are selected to save activations and other layers
are selected to discard activations.

[0740] In various embodiments and/or usage scenarios,
any one or more of SGD, MBGD, and CPGD, with or
without RCP, are implemented via one or more of: a fabric
of processing elements (e.g., as illustrated in FIG. 4), one or
more GPUs, one or more CPUs, one or more DSPs, one or
more FPGAs, and one or more ASICs.

[0741] SGD, e.g., with back-propagation, is usable (as
described elsewhere herein) for training a neural network.
However, learning via gradient descent is inherently sequen-
tial, because each weight update uses information from a
gradient measurement made after completion of a full for-
ward pass through the neural network. Further, weight
updates are made during a corresponding backward pass
through the neural network (following and corresponding to
the forward pass), and thus the last weight update occurs
after completion of the entire corresponding backward pass.
[0742] MBGD enables more parallelism than SGD by
gradient averaging over a mini-batch, processing several (a
‘mini-batch’ of) activations in parallel. However, speed of
sequential updates, compared to SGD, is unchanged, and
weight updates, as in SGD, are completed after completion
of all corresponding backward passes through the neural
network. As mini-batch size increases by processing more
activations in parallel, gradient noise is reduced. Beyond a
point the reduction in gradient noise, in some scenarios,
results in poor generalization.

[0743] CPGD enables parallel processing and updating of
weights in all layers of a neural network, while activations
propagate through the layers in a stream. Thus CPGD
overcomes, in some embodiments and/or usage scenarios,
sequential processing limitations of SGD and MBGD.
[0744] RCP enables reduced memory usage via (re)com-
puting activations that would otherwise be stored, and is
usable in combination with SGD, MBGD, and CPGD.
[0745] Pipeline flow diagrams are usable to compare and
contrast various SGD, MBGD, CPGD, and CPGD with RCP
techniques. Information flows and concurrency in training
techniques are visible with the pipeline flow diagrams FIGS.
26A-D illustrate embodiments of pipeline flows for layers of
a neural network flow from left to right, e.g., activations
enter from the left and forward pass propagation of layer
computations flows to the right. A gradient computation is
performed in the rightmost layer to begin the backward pass
propagation of layer computations including weight updates
from right to left. Time advances from top to bottom.
[0746] FIG. 26A illustrates an embodiment of a pipeline
flow for SGD. Weight updates of layers of a neural network
are completed after completion of a corresponding full
forward pass and a corresponding full backward pass
through all the layers of the neural network. A next forward
pass begins only after completion of weight updates corre-
sponding with an immediately preceding forward pass. As
illustrated, First Forward Pass 2611 is performed (from the
first layer to the last layer, illustrated left to right in the

Nov. 1, 2018

figure). Then First Backward Pass 2621 is performed (from
the last layer to the first layer, illustrated right to left in the
figure). During First Backward Pass 2621, weights are
updated, from the last layer to the first layer. The last weight
update (of the first layer) is completed as First Backward
Pass 2621 completes. Then Second Forward Pass 2612 is
performed (using the weights updated during First Back-
ward Pass 2621), followed by Second Backward Pass 2622,
during which weight updates are performed.

[0747] FIG. 26B illustrates an embodiment of a pipeline
flow for MBGD. A plurality of activations are processed
with identical weights. Coordinated quiet times are used to
synchronize weight updates. In some embodiments and/or
usage scenarios, MBGD processing is characterized by
Mini-Batch Size (N) 2631, Overhead 2632, and Update
Interval (U) 2633.

[0748] Unlike gradient-descent techniques (e.g., SGD and
MBGD) that use a full forward pass and a full backward pass
through a network to compute a gradient estimate, and thus
result in a sequential dependency, CPGD uses a differential
construction to replace the sequential dependency with a
continuous model that has sustained gradient generation. In
some embodiments and/or usage scenarios, CPGD enables
layer parallelism by enabling each layer of a neural network
to be trained (e.g., to ‘learn’) concurrently with others of the
layers without explicit synchronization. Thus, paralleliza-
tion along the depth of a neural network enables applying
more computing resources to training In various embodi-
ments and/or usage scenarios, CPGD provides comparable
accuracy and improved convergence rate expressed in
epochs of training compared to other techniques.

[0749] FIG. 26C illustrates an embodiment of a pipeline
flow for CPGD. CPGD processing maintains a model in
flux. Hidden representations and deltas enter every layer at
every time step, and weights update at every time step. The
CPGD processing is a coordinated synchronous operation.
In some embodiments and/or usage scenarios, CPGD pro-
cessing is characterized by Forward Pass 2651 and a corre-
sponding Backward Pass 2661, respectively representing
one of a number of forward passes and one of a number of
corresponding backward passes. In operation, respective
forward passes of a plurality of forward passes operate in
parallel with each other, respective backward passes of a
plurality of backward passes operate in parallel with each
other, and the pluralities of forward passes and the pluralities
of backward passes operate in parallel with each other.
Weight updates (made during backward passes) are used by
forward passes and backward passes as soon as the weight
updates are available.

[0750] As a specific example, Forward Pass 2665 begins,
and later Forward Pass 2666 begins. At least a portion of
Forward Pass 2665 operates in parallel with at least a portion
of Forward Pass 2666. At least a portion of a corresponding
backward pass for Forward Pass 2665 operates in parallel
with at least a portion of Forward Pass 2666. Further, the
corresponding backward pass completes at least some
weight updates that are used by Forward Pass 2666, as
shown by example Weight Update Use 2667.

[0751] FIG. 26D illustrates an embodiment of a pipeline
flow for CPGD with RCP. CPGD with RCP omits saving
selected activations, instead recomputing the selected acti-
vations. In some embodiments and/or usage scenarios, the
recomputing is performed with updated weights. Thus,
reverse checkpoint enables reduced memory (illustrated as

US 2018/0314941 Al

reduced area covered by vertical lines passing saved hidden
representations forward in time) and reduces time disparity
between calculated hidden representations and correspond-
ing deltas.

[0752] As a specific example, CPGD with RCP processing
is characterized by Forward Pass 2671 and a corresponding
Backward Pass 2681. A first activation is computed during
the Forward Pass and stored in a layer for use in the
corresponding Backward Pass, as illustrated by Activation
Storage 2685. Activation Storage 2685 is occupied during
portions of Forward Pass and Backward Pass and unavail-
able for other uses. A specific example of memory reduction
is illustrated by Recomputed Activation Storage 2686. A
second activation is computed during the Forward Pass, but
is discarded and does not require any storage. During the
Backward Pass the second activation is recomputed and
stored in a layer for use in the Backward Pass as illustrated
by Recomputed Activation Storage 2686. Recomputed Acti-
vation Storage 2686 is unoccupied throughout the entire
Forward Pass and available for other uses (e.g., other
forward passes, other backward passes), thereby reducing
the memory required.

[0753] Considering parallelization more generally, in
some embodiments and/or usage scenarios, parallelizing a
computation (e.g., neural network training) spreads the
computation over separate computation units operating
simultaneously. In a model-parallel regime, separate units
simultaneously evaluate a same neural network using dis-
tinct model parameters. In a data-parallel regime, separate
workers simultaneously evaluate distinct network inputs
using the same formal model parameters. Some scaling
techniques use fine-grained data parallelism across layers
and among units in a cluster.

[0754] MBGD, in some embodiments and/or usage sce-
narios, improves accuracy of a gradient estimate as a func-
tion of a mini-batch size, n. However, computation to
perform MBGD for mini-batch size n is approximately equal
to computation to perform SGD for n steps. In some
situations, SGD for n steps is more efficient than MBGD for
a mini-batch size n by approximately the square root of n.
Thus, higher parallelism (e.g., as in MBGD) and higher
efficiency (e.g., as in SGD) are sometimes mutually exclu-
sive.

[0755] In some embodiments and/or usage scenarios, a
deep neural network is a high-dimensional parameterized
function, sometimes expressed as a directed acyclic graph.
Back propagation techniques are sometimes expressed by a
cyclic graph. The cycle in the graph is a feedback iteration.
Gradients produced by a first full network evaluation change
weights used in a next iteration, because the iteration is a
discrete approximation of a continuous differential system.
The discrete approximation comprises an unbiased continu-
ous-noise process with time-varying statistics. The noise
process provides regularization to enable the continuous
system to model phenomena observed in discrete-time learn-
ing systems. In the discrete case, regularization is provided
by a sampling procedure (e.g., SGD), by learning rate,
and/or by other explicit mechanisms. A time-dependent
noise process enables using a learning-rate schedule that
erases local high-frequency contours in parameter space. As
a correct region is approached, regularization is reduced,
leading, in some circumstances, to a better final solution.
[0756] CPGD, in a conceptual framework of an arbitrary
feed-forward neural network, expresses all nodes as func-

Nov. 1, 2018

tions of time and applies functional composition to formu-
late representations in terms of internal state and stimuli the
internal state is subjected to. A factorization results with
individual layers as systems with independent local dynam-
ics. Two dimensions are depth of the network and time
evolution of parameters. In some embodiments and/or usage
scenarios implementing acceleration by mapping network
layers to computational units separated in space, there is
latency communicating between the network layers. Thus
there is a time delay communicating between the layers.
Some implementations of CPGD are synchronous imple-
mentations that account for the time delays.

[0757] During CPGD processing, an activation vector and
associated hidden representations are combined with model
parameters at different time steps during the forward pass of
the activation vector. The difference between model param-
eters at different time steps versus a same time step is not
detectable by the activation vector going forward. Concep-
tually it is as if a fixed set of parameters from successive
time steps were used to form an aggregate parameter state
that is then used for learning.

[0758] There is a choice during the backward pass (e.g.,
delta propagation) to use either immediate parameters (e.g.,
weights) after updating or to retrieve historical parameters
anchored to when the corresponding forward pass was
performed. Deltas computed from the immediate parameters
use updated information corresponding to a current param-
eter slope. Some embodiments and/or usage scenarios use
immediate parameters. Some embodiments and/or usage
scenarios use historical parameters.

[0759] Some implementations of CPGD use memory on
an order similar to SGD. Reverse checkpoint (as described
elsewhere herein) is usable with CPGD, such as to reduce
memory usage. Some embodiments and/or usage scenarios
of reverse checkpoint use immediate parameters (e.g.,
weights) to recompute activations. Some embodiments and/
or usage scenarios of reverse checkpoint use historical
parameters to recompute activations. In some embodiments
and/or usage scenarios using immediate parameters to
recompute activations, a time disparity between parameters
used for computing forward propagating activations and
backward-propagating deltas is reduced in the aligning
wavefronts.

[0760] Continuous propagation techniques are usable in
conjunction with mini-batch style processing (e.g., MBGD).
In some embodiments and/or usage scenarios, a subsequent
batch is started before an immediately preceding batch is
completed, conceptually similar to asynchronous SGD.
Parameter inconsistency within the pipeline is limited to no
more than one batch boundary.

[0761] In some embodiments and/or usage scenarios,
enabling data to stream through a neural network and to
perform computations without a global synchronization
boundary, enables extracting learning information not oth-
erwise extracted. In some embodiments and/or usage sce-
narios, a lower learning rate dominates using larger batch
sizes. In some embodiments and/or usage scenarios, hidden
activity and/or delta arcs are conceptually interpreted as
individual vectors or alternatively batch matrices. The batch
matrices interpretation enables implementing techniques as
described herein directly on GPUs, CPUs, DSPs, FPGAs,
and/or ASICs.

[0762] FIGS. 27A-27E illustrate various aspects of for-
ward pass and backward pass embodiments in accordance

US 2018/0314941 Al

with SGD, MBGD, CPGD, and RCP processing. In the
figures, two layers of neurons are illustrated, representing
respective layers of, e.g., a portion of a deep neural network.
In various embodiments and/or usage scenarios, the deep
neural network comprises thousands or more layers and
thousands or more neurons per layer. In various embodi-
ments and/or usages scenarios, the first layer is an input
layer receiving activations for training from an agent exter-
nal to the deep neural network. In various embodiments
and/or usage scenarios, the second layer is an output layer
where the forward pass completes, and the backward pass
begins. In various embodiments and/or usage scenarios, the
first layer and the second layer are internal layers.

[0763] FIG. 27A and FIG. 27B respectively illustrate
forward pass and backward pass embodiments in accordance
with SGD, MBGD, and CPGD, without RCP. The two layers
are illustrated as Previous Layer 2701 and Subsequent Layer
2702. Previous Layer 2701 comprises Compute 2710 and
Storage 2715. Subsequent Layer 2702 comprises Compute
2720 and Storage 2725. Compute 2710 and Compute 2720
are examples of compute resources and Storage 2715 and
Storage 2725 are examples of storage resources.

[0764] FIGS. 27C-27E illustrate forward pass and back-
ward pass embodiments in accordance with SGD, MBGD,
and CPGD, with RCP. The two layers are illustrated as
Previous Layer 2703 and Subsequent Layer 2704. Previous
Layer 2703 comprises Compute 2730 and Storage 2735.
Subsequent Layer 2704 comprises Compute 2740 and Stor-
age 2745. Compute 2730 and Compute 2740 are examples
of compute resources and Storage 2735 and Storage 2745
are examples of storage resources.

[0765] Like-numbered elements in FIGS. 27A-27E have
identical structure and operation, although the compute
resources produce different results dependent on differing
inputs, and the storage resources store and subsequently
provide different values dependent on differing values
stored. Other embodiments are envisioned with differing
compute resources and/or differing storage resources usable
for forward pass and backward pass computation and stor-
age. E.g., a backward pass uses a transpose weight storage
not used by a forward pass. Other embodiments are envi-
sioned with differing compute and/or storage resources
usable for differing forward pass and backward pass imple-
mentations. E.g., an RCP-based embodiment uses an addi-
tional compute resource (not illustrated) than used for for-
ward pass or backward pass processing without RCP.
[0766] Regarding FIG. 27A, Compute 2710 is enabled to
perform computations, such as forward pass computations F
2711. Storage 2715 is enabled to store activations, such as in
A 2716. Storage 2715 is further enabled to store weights,
such as in W 2717. Compute 2720, F 2721, Storage 2725, A
2726, and W 2727, are, in various embodiments and/or
usage scenarios, substantially similar or identical in struc-
ture and/or operation respectively to Compute 2710, F 2711,
Storage 2715, A 2716, and W 2717.

[0767] In forward pass operation for SGD or MBGD,
activation A, , 2781 is received by Previous Layer 2701 and
stored in A 2716 (for later use during the backward pass).
A, ;2781 and a weight W, , previously stored in W 2717, are
then processed in accordance with F 2711 to produce
activation A, , 2782. A, , 2782 is then passed to Subsequent
Layer 2702. Similarly to the Previous Layer, A, , 2782 is
received by Subsequent Layer 2702 and stored in A 2726
(for later use during the backward pass). A,, 2782 and a

Nov. 1, 2018

weight W, , previously stored in W 2727 are then processed
in accordance with F 2721 to produce activation A; , 2783.
A, 2783 is then provided to a next subsequent layer (if
present) for processing, and so forth, until the forward pass
is complete and the backward pass commences. If Subse-
quent Layer 2702 is the output layer, then the forward pass
is completed and the backward pass corresponding to the
forward pass is initiated.

[0768] Regarding FIG. 27B, for clarity, elements of Com-
pute 2710 and Compute 2720 dedicated to forward pass
processing (F 2711 and F 2721) are omitted. With respect to
structure and operation illustrated and described with respect
to FIG. 27A, FIG. 27B illustrates that Compute 2710 is
further enabled to perform additional computations, such as
backward pass computations B 2712, and Compute 2720 is
further enabled to perform additional computations, such as
backward pass computations B 2722. Storage 2715 is further
enabled to store a computed weight, such as in W 2718, and
Storage 2725 is further enabled to store a computed weight,
such as in W 2728. B 2722 and W 2728 are, in various
embodiments and/or usage scenarios, substantially similar
or identical in structure and/or operation respectively to B
2712 and W 2718.

[0769] In backward pass operation for SGD or MBGD,
delta A; , 2793 is received from the next subsequent layer (if
present) during backward pass processing. If Subsequent
Layer 2702 is the output layer, then Subsequent Layer 2702
computes delta A, , according to the delta rule, e.g., as a
function of the difference between the output of the Subse-
quent Layer (e.g., the estimated output) and the training
output (e.g., desired output). A;, 2793, the weight W, ,
previously stored in W 2727, and the activation A, , previ-
ously stored in A 2726, are then processed in accordance
with B 2722 (e.g., in accordance with the delta rule) to
produce delta A, , 2792 and a new weight W, ,,, that is then
stored in W 2728 for use in a next forward pass. A, , 2792
is then passed to Previous Layer 2701. Similarly to the
Subsequent Layer, delta A, , 2792, the weight W, , previ-
ously stored in W 2717, and the activation A, , previously
stored in A 2716, are then processed in accordance with B
2712 to produce delta A, , 2791 and a new weight W, ,, that
is then stored in W 2718 for use in the next forward pass. A ,
2791 is then passed to a next previous layer (if present) for
processing, and so forth, until the backward pass is complete
and a next forward pass commences. If Previous Layer 2701
is the input layer, then the backward pass is complete, and
the next forward pass commences.

[0770] In SGD and MBGD (and unlike CPGD), the next
forward pass is delayed until the previous backward pass
completes, e.g., W 2717 and W 2727 are respectively
updated with W 2718 and W 2728 after W 2717 and W 2727
have been used for a same forward pass and a same
corresponding backward pass. Therefore, the next forward
pass is performed using weights that are from the same
backward pass.

[0771] FIG. 27A, in addition to illustrating SGD and
MBGD forward pass processing, also illustrates CPGD
forward pass processing. However, operation for CPGD is
different compared to SGD and MBGD, in that weight
updates and the next forward pass are performed as soon as
possible, rather than being delayed until completion of the
previous backward pass. E.g., W 2717 and W 2727 are
respectively updated with W 2718 and W 2728 as soon as
possible. Therefore, the next forward pass has selective

US 2018/0314941 Al

access to weights from prior iterations, and thus selectively
produces activations differing from those produced under
the same conditions by SGD and MBGD.

[0772] More specifically, in Previous Layer 2701, A, ,
2781 is received and stored in A 2716, identically to SGD
and MBGD. A, , 2781 and a weight W, ., ; previously
stored in W 2717 are then processed in accordance with F
2711 to produce activation A, , 2782. The weight W, , , ;
was produced and stored by a backward pass corresponding
to a forward pass preceding the instant forward pass by k—j
forward passes. A, , 2782 is then passed to Subsequent Layer
2702, and similarly to the Previous Layer, A,, 2782 is
received and stored in A 2726, identically to SGD and
MBGD. A, , 2782 and a weight W, ,_, previously stored in
W 2727 are then processed in accordance with F 2721 to
produce activation A, , 2783. The weight W, ., was pro-
duced and stored by a backward pass corresponding to a
forward pass preceding the instant forward pass by k for-
ward passes. Note that the Previous Layer and the Subse-
quent Layer, for processing of a same forward pass, use
weights from different backward passes. As in SGD and
MBGD, A, , 2783 is then provided to a next subsequent layer
(if present) for processing, and so forth, until the forward
pass is complete and the backward pass commences. If
Subsequent Layer 2702 is the output layer, then the forward
pass is completed and the backward pass corresponding to
the forward pass is initiated. In some embodiments and/or
usage scenarios, the value of j is 0 and (k-j) and (k) are
equal. In various embodiments and/or usage scenarios, the
Previous Layer and the Subsequent Layer simultaneously
process one of: different forward passes, different backward
passes, and a forward pass and a different backward pass.

[0773] FIG. 27B, in addition to illustrating SGD and
MBGD backward pass processing, also illustrates CPGD
backward pass processing. Processing of the backward pass
in CPGD is identical to that of SGD and MBGD. However,
selected results (e.g., selected weights) are used earlier than
in SGD and MBGD. For example, W, , ,_;, as produced by
backward pass t-k—j, and W, ,_,, as produced by backward
pass t-k are used earlier than in SGD and MBGD, e.g.,
forward pass t.

[0774] FIG. 27C illustrates an embodiment of forward
pass processing of any of SGD, MBGD, and CPGD, in
combination with RCP. Compute 2730 and Storage 2735,
are, in various embodiments and/or usage scenarios, sub-
stantially similar or identical in structure and/or operation
respectively to Compute 2710 and Storage 2715. Compute
2740 and Storage 2745, are, in various embodiments and/or
usage scenarios, substantially similar or identical in struc-
ture and/or operation respectively to Compute 2720 and
Storage 2725, other than omission of storage for activations
A 2726 of Storage 2725 having no counterpart in Storage
2745.

[0775] In forward pass operation, with respect to Previous
Layer 2703, activation A, , 2781 is received and processed
in accordance with forward pass processing in Compute
2730, and stored in Storage 2735 as described with respect
to FIG. 27A. However, with respect to Subsequent Layer
2704, activation A,, 2782 is received, and processed in
accordance with forward pass processing in Compute 2740,
but is not stored (instead it is recomputed in accordance with
RCP during backward pass processing).

[0776] FIG. 27D and FIG. 27E respectively illustrate first
and second portions of an embodiment of backward pass

Nov. 1, 2018

processing of any of SGD, MBGD, and CPGD, in combi-
nation with RCP. For clarity, elements of Compute 2730 and
Compute 2740 dedicated to forward pass processing (F
2721) are omitted. With respect to structure and operation
illustrated and described with respect to FI1G. 27C, FIG. 27D
and FIG. 27E illustrate that Compute 2730 is further enabled
to perform additional computations, such as backward pass
computations B 2712, and Compute 2740 is further enabled
to perform additional computations, such as backward pass
computations B 2722. Storage 2735 is further enabled to
store a computed weight, such as in W 2718, and Storage
2745 is further enabled to store a computed weight, such as
in W 2728, as well as a recomputed activation, such as in A
2729.

[0777] In the first portion of the backward pass operation,
activations not stored in the corresponding forward pass are
recomputed. In SGD and MBGD scenarios, the recomputed
activation is formulated in Previous Layer 2703 by process-
ing the activation stored from the forward pass in A 2716 and
weight stored in W 2717 in accordance with F 2711 to
produce activation A', , 2784, that is then stored in A 2729
of Subsequent Layer 2704. Since SGD and MBGD delay
weight updates and commencement of a next forward pass
until the forward pass and corresponding backward pass are
complete, A',, 2784 is identical to the value discarded
during the forward pass, A, , 2782.

[0778] In a CPGD scenario, the recomputed activation is
formulated according to the same topology as the SGD and
MBGD scenarios. However, CPGD performs updates with-
out delays and enables commencement of a next forward
pass without regard to completion of previous backward
passes. Thus, a weight value stored at the time of the
backward pass, e.g., in W 2717, according to embodiment
and/or usage scenarios, selectively differs from the weight
value stored during the corresponding forward pass. As a
specific example, in accordance with FIG. 27C, W 2717
stored W, , ,_ during the forward pass. However, during the
backward pass, additional weight updates have occurred,
e.g., corresponding to m iterations, and now W 2717 stores
W, i t_jsm Therefore, A'; 2784 selectlvely differs from the
value discarded during the forward pass, A, , 2782.

[0779] In the second portion of backward pass operation,
computation proceeds using the recomputed activation. In
SGD and MBGD scenarios, since the recomputed activation
is identical to the discarded activation (e.g., conceptually the
value stored in A 2729 is identical to the value stored in A
2726), the backward processing produces results that are
identical to the results described with respect to FIG. 27B.
E.g., deltas A'; , 2796, A", , 2795, and A", , 2794 are identical,
respectively, to A, , 2793, A, , 2792, and A, , 2791. In the
CPGD scenario, since the recomputed activation selectively
differs from the discarded activation, the backward process-
ing produces results that are selectively different from the
results described with respect to FIG. 27B. E.g., deltas A'; ,
2796, A',, 2795, and A'| , 2794 are selectively different,
respectlvely, to Az, 2793, A2 , 2792, and A, , 2791.

[0780] In some embodiments and/or usage scenarios, W
2717 is distinct from W 2718 (as illustrated), and in some
embodiments and/or usage scenarios, W 2718 and W 2717
are a same portion of storage (not illustrated), such that
saving a new value in W 2718 overwrites a previously saved
value in W 2717. Similarly, W 2727 is variously distinct
from or the same as W 2728. In various embodiments and/or
usage scenarios, A 2729 is variously implemented to use

US 2018/0314941 Al

fewer memory locations and/or use a same number of
memory locations for a shorter time than A 2726.

[0781] In various embodiments and/or usages scenarios,
activations and/or weights are implemented and/or repre-
sented by any one or more scalar, vector, matrix, and
higher-dimensional data structures. E.g., any one or more of
A 2716, A 2726, A 2729, W 2717, W 2727, W 2718, and W
2728 are enabled to store any one or more of one or more
scalars, one or more vectors, one or more matrices, and one
or more higher-dimensional arrays.

[0782] In various embodiments and/or usage scenarios,
one or more elements of Previous Layer 2701 and Subse-
quent Layer 2702 are implemented by respective PEs, e.g.,
a portion of PE 499 or similar elements of FIG. 4. E.g., PE
497 implements Previous Layer 2701 and PE 498 imple-
ments Subsequent Layer 2702. Activation A,, 2782 and
delta A, , 2792 are communicated via Bast coupling 431. In
some embodiments and/or usage scenarios, one or more
elements of Previous Layer 2701 and Subsequent Layer
2702 are implemented by one or more of CPUs, GPUs,
DSPs, and FPGAs.

[0783] In various embodiments and/or usage scenarios, all
or any portions of elements of F 2711, F 2721, B 2712, and
B 2722 conceptually correspond to all or any portions of
executions of instructions of Task SW on PEs 260 of FIG.
2.

Example Workload Mapping

[0784] Conceptually, Deep Learning Accelerator 400
(FIG. 4) is a programmable compute fabric (see, e.g., FIGS.
5-8 and section “Processing Element: Compute Element and
Router”). For example, the compute element of each PE 499
element is enabled to execute sequences of instructions of
tasks (such as conceptually corresponding to all or any
portions of executions of instructions of Task SW on PEs
260 of FIG. 2), and the router element of router element of
each PE 499 is configurable to route wavelets between the
PEs. The programmable compute fabric enables mapping of
workloads onto the compute fabric in various manners.
Described following is an example high-level mapping of a
workload to the compute fabric to illustrate various tech-
niques and mechanisms implemented by the compute fabric.
[0785] The workload is deep neural network training,
implemented via SGD. The deep neural network comprises
a plurality of layers of neurons. The workload has three
mega-phases: a forward pass, a delta pass, and a chain pass.
The forward pass propagates activations in a forward direc-
tion. The delta pass propagates deltas in a backward direc-
tion. The chain pass calculates gradients based on the deltas
as the deltas are generated in the delta pass. The three
mega-phases have approximately a same amount of com-
pute.

[0786] FIG. 4 illustrates an example mapping of the mega-
phases to the PEs. Each layer is implemented by blocks of
PEs allocated from the compute fabric (aka ‘placed’) back-
to-back (e.g., in a horizontal dimension). Data movement
propagates to the end of the fabric during the forward pass
(Forward 401), and then circles back in the reverse direction
during the delta pass (Delta 402) and chain pass (Chain 403).
The placement is directed to reduce data movement since the
forward pass saves activations to be used by the delta pass
and the chain pass. In the example, all the PEs are time
shared three ways between the three mega-phases, with each
mega-phase using approximately a same amount of com-

Nov. 1, 2018

pute. In some circumstances, an entire chain of PEs per-
forming the passes operates as a pipeline such that each layer
is a pipe stage (taking roughly a same amount of time to
complete) and each activation of a mini-batch is fills the
pipeline.

[0787] In some embodiments and/or usage scenarios,
within a set of the PEs mapped to a single one of the layers,
the weights of the single layer are distributed across the PEs
such that a single neuron is mapped to multiple PEs.
Splitting a single neuron across multiple PEs, in some
circumstances, provides a load balancing benefit and pro-
vides a communication partitioning benefit (see, e.g., FIGS.
17-20 and section “Neuron Smearing”).

[0788] Conceptually, processing proceeds as follows (see
Forward 401 of FIG. 4). Activations are broadcasted into the
layer along the horizontal axis. Activations are received by
the PEs and trigger a lookup of the associated weights that
are stored local to the PEs (corresponding to the neurons
mapped to the PEs). Only non-zero activations are broad-
casted, so no compute is wasted for zero activations (an
example of activation sparsity harvesting). Each PE per-
forms a local multiply and accumulate of the incoming
activation with all the neuron weights producing local partial
sums. Since the weights of each neuron are distributed to
multiple PEs, partial sums are then accumulated across the
PEs in the vertical direction, in accordance with the neuron
weight distribution. After the partial sums are accumulated
producing a final sum, the activation function is performed
and all new non-zero activations are broadcast to the next
layer.

[0789] The delta pass (see Delta 402 of FIG. 4) and the
chain pass (see Chain 403 of FIG. 4) follow a data flow
similar to that of the forward pass. In some embodiments
and/or usage scenarios, the delta pass and the chain pass are
placed offset by one layer so the activations are stored in the
same layers as the weights used in the backward direction.
Activations are stored by the receiving layer such that in the
delta pass and the chain pass, the activations are used
directly without additional communication. In addition to
storing activations, a weight transpose is performed to
implement the delta pass. The weight transpose, in some
embodiments and/or usage scenarios, is implemented by
replicating the weights, using additional memory capacity
and additional communication when updating the weights.
In some embodiments and/or usage scenarios, the weight
transpose is implemented by transposing the delta broadcast
in the vertical dimension.

[0790] FIG. 28A illustrates a generic operation of a matrix
(m) multiplied by a vector (v). FIG. 28B illustrates, in the
style of FIG. 28 A, various representations of memory struc-
tures used in the three mega-phases in some embodiments
(e.g., a fully connected neural network). In various embodi-
ments, the weight (w) and the gradient accumulation (g) data
structures are two-dimensional matrices. In some embodi-
ments, the forward partial sum (fpsum) and delta partial sum
(dpsum) and forward pass activations (a) are one-dimen-
sional vectors. The two-dimensional matrices are stored in
memory (e.g., Memory 854 of FIG. 8) since in some
embodiments and/or usage scenarios the two-dimensional
matrices are relatively large. In some embodiments, the
one-dimensional vectors are stored in higher-throughput
storage (e.g., D-Store 848 of FIG. 8) to enable, usage
scenarios, full datapath performance for the multiply-accu-
mulate vector operation in each of the three passes.

US 2018/0314941 Al

[0791] FIG. 29 illustrates an embodiment of tasks (see,
e.g., FIGS. 9-12 and section “Tasks™) as used in a forward
pass state machine. In some embodiments and/or usage
scenarios, each of the PEs implements an instantiation of the
state machine. In some embodiments and/or usage scenarios,
various portions of the state machine are implemented by
respective PEs (see, e.g., FIGS. 17-20 and section “Neuron
Smearing”). There are four tasks in the state machine:
f_rxact:acc 2901, f_rxact:close 2902, { psum:prop 2903,
and f_txact:tx 2904. Conceptually, activations arrive from a
PE to the “left” of the instant PE (corresponding to a
previous layer). Incoming (non-closeout) activations on the
activation broadcast wire (Activations 2911) trigger {_rxact:
acc 2901. The instant PE executes instructions of the task,
looking up (e.g., from memory local to the instant PE) the
weights associated with the activation and performing the
local weight multiply and accumulate into partial sums.
Control flow dependencies exist between f_rxact:acc 2901
and f_psum:prop 2903 (Flow 2913). Example data struc-
tures the task references are wrow, fpsum, and fact.

[0792] An incoming activation closeout on the activation
broadcast wire (Closeouts 2912) triggers {_rxact:close 2902.
The closeout signals the end of all activations for the current
wavefront. The instant PE executes instructions of the task,
starting the partial sum accumulation ring with the partial
sums in a start list of the instant PE (Start Psums 2916).
Example data structures the task references are fpsum_acc_
mem, and fpsum_acc_fab.

[0793] An incoming partial sum (Prop Psums 2930) trig-
gers _psum:prop 2903. The instant PE executes instructions
of the task, adding the incoming partial sum to the local
partial sum of the instant PE, and then forwarding the result
to the next hop on the ring (Prop Psums 2931). If the instant
PE is the end of the ring, then the final sum is generated. In
some embodiments and/or usage scenarios, additional pro-
cessing is performed to prevent deadlock. Example data
structures the task references are fpsum_acc_mem, fpsum_
acc_fab, and f txact_wake.

[0794] When there are queued activations to transmit,
f_txact:itx 2904 is self-triggered (Wake 2914). The instant
PE executes instructions of the task, de-queuing an activa-
tion and transmitting the activation on the broadcast wire to
the next layer (Activations 2921). When more items remain
in the queue, the instant PE reschedules the task (Reschedule
2915). When the queue is empty, the instant PE sends a
closeout wavelet to close the wavefront (Closeouts 2922).
[0795] The activations (incoming and outgoing) and the
partial sums (incoming and outgoing), as well as the close-
out wavelets are communicated as wavelets (see, e.g., FIGS.
13A-15B and section “Wavelets”). In some embodiments
and/or usage scenarios, one or more of the wavelets corre-
spond to one or more elements of fabric vectors as described
by one or more DSDs and/or XDSDs.

[0796] Data structures for the various state machines are
referenced via a plurality of DSDs stored in respective DSRs
(see, e.g., FIGS. 21A-24 and section “Vectors and Data
Structure Descriptors™), as described by the following table.

DSR Data Structure Name Description

DS1 ‘Wrow
DS2 Weol

Weight matrix, rows
Weight matrix, cols (points to same data
as DS2)

Nov. 1, 2018

-continued

DSR Data Structure Name Description

DS3 Fpsum Forward partial sum vector - full
vector of all psums

Length: number of neurons

Stride: 1

Forward partial sum vector - subset
for psum accumulate

Same data as psum but organized
as 2d array

Length: number of neurons in subset
Stride: 1

Forward partial sum vector - subset
for psum accumulate

Fabric type: col:ep = £ psum:prop
Length: number of neurons in subset
Forward activation storage vector
Length: 1

Stride: 1

Forward activation fabric transmit
Fabric type: coliep = f txact:ace
Length: 1

Self reschedule wake up wavelet
Fabric type: coliep = f_txactitx
Forward activation close out fabric
transmit

Fabric type: coliep = f txact:close

Length: 1

DSs4 fpsum__acc__mem

DS5 fpsum__acc_ fab

DS6 Fact

DS7 fact_ fab

DS8 ftxact wake

DS9 fact_close_ fab

[0797] The foregoing example workload mapping is with
respect to SGD. However, the techniques are readily appli-
cable to MBGD and CPGD, with and without RCP.

Other Embodiment Details

[0798] Embodiments and usage scenarios described with
respect to FIGS. 1-29 are conceptually with respect to a PE
comprising a CE that is programmable, e.g., that processes
data according to instructions. Other embodiments are con-
templated with one or more of the CEs being partially or
entirely hardwired, e.g., that process data according to one
or more fixed-circuit processing elements operable without
instructions. As a specific example, a particular CE com-
prises a hardware logic unit circuit that implements all or a
portion of an LSTM unit. The particular CE is comprised
with a router in a particular PE that is operable in a fabric
with other PEs. Some of the other PEs are similar to or
identical to the particular PE and some of the other PEs are
similar to or identical to PE 499 of FIG. 4.

Example Implementation Techniques

[0799] In some embodiments, various combinations of all
or any portions of operations performed for and/or structure
associated with any of accelerated deep learning; SGD,
MBGD, CPGD with and without RCP for accelerated deep
learning; data structure descriptors and fabric vectors for
accelerated deep learning; neuron smearing for accelerated
deep learning; task synchronization for accelerated deep
learning; dataflow triggered tasks for accelerated deep learn-
ing; a control wavelet for accelerated deep learning; and/or
a wavelet representation for accelerated deep learning; as
well as portions of a processor, microprocessor, system-on-
a-chip, application-specific-integrated-circuit, hardware
accelerator, or other circuitry providing all or portions of the
aforementioned operations, are specified by a specification
compatible with processing by a computer system. The
specification is in accordance with various descriptions,

US 2018/0314941 Al

such as hardware description languages, circuit descriptions,
netlist descriptions, mask descriptions, or layout descrip-
tions. Example descriptions include: Verilog, VHDL,
SPICE, SPICE variants such as PSpice, IBIS, LEF, DEF,
GDS-II, OASIS, or other descriptions. In various embodi-
ments, the processing includes any combination of interpre-
tation, compilation, simulation, and synthesis to produce, to
verify, or to specify logic and/or circuitry suitable for
inclusion on one or more integrated circuits. Each integrated
circuit, according to various embodiments, is compatible
with design and/or manufacture according to a variety of
techniques. The techniques include a programmable tech-
nique (such as a field or mask programmable gate array
integrated circuit), a semi-custom technique (such as a
wholly or partially cell-based integrated circuit), and a
full-custom technique (such as an integrated circuit that is
substantially specialized), any combination thereof, or any
other technique compatible with design and/or manufacture
of integrated circuits.

[0800] In some embodiments, various combinations of all
or portions of operations as described by a computer read-
able medium having a set of instructions stored therein, are
performed by execution and/or interpretation of one or more
program instructions, by interpretation and/or compiling of
one or more source and/or script language statements, or by
execution of binary instructions produced by compiling,
translating, and/or interpreting information expressed in
programming and/or scripting language statements. The
statements are compatible with any standard programming
or scripting language (such as C, C++, Fortran, Pascal, Ada,
Java, VBscript, and Shell). One or more of the program
instructions, the language statements, or the binary instruc-
tions, are optionally stored on one or more computer read-
able storage medium elements. In various embodiments,
some, all, or various portions of the program instructions are
realized as one or more functions, routines, sub-routines,
in-line routines, procedures, macros, or portions thereof.

CONCLUSION

[0801] Certain choices have been made in the description
merely for convenience in preparing the text and drawings,
and unless there is an indication to the contrary, the choices
should not be construed per se as conveying additional
information regarding structure or operation of the embodi-
ments described. Examples of the choices include: the
particular organization or assignment of the designations
used for the figure numbering and the particular organization
or assignment of the element identifiers (the callouts or
numerical designators, e.g.) used to identify and reference
the features and elements of the embodiments.

[0802] Various forms of the words “include” and “com-
prise” are specifically intended to be construed as abstrac-
tions describing logical sets of open-ended scope and are not
meant to convey physical containment unless described
explicitly (such as followed by the word “within”).

[0803] Although the foregoing embodiments have been
described in some detail for purposes of clarity of descrip-
tion and understanding, the invention is not limited to the
details provided. There are many embodiments of the inven-
tion. The disclosed embodiments are exemplary and not
restrictive.

[0804] It will be understood that many variations in con-
struction, arrangement, and use are possible consistent with
the description, and are within the scope of the claims of the

Nov. 1, 2018

issued patent. For example, interconnect and function-unit
bit-widths, clock speeds, and the type of technology used are
variable according to various embodiments in each compo-
nent block. The names given to interconnect and logic are
merely exemplary, and should not be construed as limiting
the concepts described. The order and arrangement of flow-
chart and flow diagram process, action, and function ele-
ments are variable according to various embodiments. Also,
unless specifically stated to the contrary, value ranges speci-
fied, maximum and minimum values used, or other particu-
lar specifications (such as file types; and the number of
entries or stages in registers and buffers), are merely those of
the described embodiments, are expected to track improve-
ments and changes in implementation technology, and
should not be construed as limitations.

[0805] Functionally equivalent techniques known in the
art are employable instead of those described to implement
various components, sub-systems, operations, functions,
routines, sub-routines, in-line routines, procedures, macros,
or portions thereof. It is also understood that many func-
tional aspects of embodiments are realizable selectively in
either hardware (e.g., generally dedicated circuitry) or soft-
ware (e.g., via some manner of programmed controller or
processor), as a function of embodiment dependent design
constraints and technology trends of faster processing (fa-
cilitating migration of functions previously in hardware into
software) and higher integration density (facilitating migra-
tion of functions previously in software into hardware).
Specific variations in various embodiments include, but are
not limited to: differences in partitioning; different form
factors and configurations; use of different operating sys-
tems and other system software; use of different interface
standards, network protocols, or communication links; and
other variations to be expected when implementing the
concepts described herein in accordance with the unique
engineering and business constraints of a particular appli-
cation.

[0806] The embodiments have been described with detail
and environmental context well beyond that required for a
minimal implementation of many aspects of the embodi-
ments described. Those of ordinary skill in the art will
recognize that some embodiments omit disclosed compo-
nents or features without altering the basic cooperation
among the remaining elements. It is thus understood that
much of the details disclosed are not required to implement
various aspects of the embodiments described. To the extent
that the remaining elements are distinguishable from the
prior art, components and features that are omitted are not
limiting on the concepts described herein.

[0807] All such variations in design are insubstantial
changes over the teachings conveyed by the described
embodiments. It is also understood that the embodiments
described herein have broad applicability to other computing
and networking applications, and are not limited to the
particular application or industry of the described embodi-
ments. The invention is thus to be construed as including all
possible modifications and variations encompassed within
the scope of the claims of the issued patent.

What is claimed is:

1. A system comprising:

a fabric of processor elements, each processor element
comprising a fabric router and a compute engine
enabled to perform datatlow-based and instruction-
based processing;

US 2018/0314941 Al

wherein each processor element selectively communi-

cates fabric packets with others of the processor ele-

ments; and

wherein each compute engine selectively performs the

processing in accordance with a virtual channel speci-

fier and a task specifier of each fabric packet the
compute engine receives.

2. The system of claim 1, wherein:

each compute engine is configured to perform a pre-

defined set of basic operations in response to receiving

a corresponding basic instruction selected from a pre-

defined native instruction set of codes; and further

comprising

a training workload comprising

a first set of machine codes selected from the native
instruction set for performing a mapping of at least
a part of a neuron onto the compute engine of the
processor element, the mapping comprising manag-
ing at least one partial-neuron weight,

a second set of machine codes selected from the native
instruction set for performing a forward pass to
propagate activations in a forward logical direction
based at least in part on the at least one partial-
neuron weight, the forward pass initiated responsive
to an input sample,

a third set of machine codes selected from the native
instruction set for performing a delta pass in a
backward logical direction to generate deltas, the
delta pass initiated responsive to completion of the
forward pass,

a fourth set of machine codes selected from the native
instruction set for performing a chain pass to calcu-
late gradients based on the deltas, and

a fifth set of machine codes selected from the native
instruction set for performing a selective update of
the at least one partial-neuron weight in accordance
with a predetermined learning rule and based at least
in part on the deltas; and

wherein each compute engine comprises storage for the at

least one partial-neuron weight.

3. The system of claim 2, wherein the mapping is in
accordance with initializing the fabric to implement a par-
titioning of a neural network into a plurality of layers, the
neuron is a first neuron of a plurality of neurons of the neural
network, the first neuron is comprised in a first layer of the
plurality of layers, and each of the plurality of neurons is
mapped in a distributed manner across a plurality of the
processor elements of the fabric.

4. The system of claim 3, wherein the plurality of layers
operates as a logical fabric pipeline comprising logical
fabric pipeline stages, each logical fabric pipeline stage
comprising completion of all of the passes for each layer, the
completion for each layer taking a time step comprising the
same amount of time.

5. The system of claim 3, wherein as each input sample of
a training set streams through at least a first plurality of the
processor elements across the plurality of layers, the neuron
weights are selectively updated in the first plurality of the
processor elements across the plurality of layers.

6. The system of claim 2, wherein an iteration of the
training workload is performed for each of a plurality of
input samples collectively comprising a training set.

7. The system of claim 6, wherein the training set is
partitioned into a plurality of so-called mini-batches and the

51

Nov. 1, 2018

predetermined learning rule specifies that the at least one
partial-neuron weight is updated after the completion of all
the passes for each input sample of each of the mini-batches.

8. The system of claim 7, wherein the forward pass
incorporates weight updates within a first plurality of the
processor elements while the mini-batch learning is ongoing
within the first plurality of the processor elements.

9. The system of claim 6, wherein for each input sample,
the system is enabled to selectively update the at least one
partial-neuron weight in accordance with the predetermined
learning rule responsive to completion of the forward pass,
the delta pass, and the chain pass corresponding to the input
sample.

10. The system of claim 9, wherein the system is enabled
for each forward pass to use weight information provided by
the most recent selective update of the at least one partial-
neuron weight.

11. The system of claim 10, wherein the system is enabled
to perform the delta pass and the chain pass for each input
sample based at least in part on activations that are recom-
puted based at least in part on a first partial-neuron weight.

12. A method comprising:

in each of a fabric of processor elements, selectively

communicating fabric packets with others of the pro-

cessor elements, each processor element comprising a

fabric router and a compute engine enabled to perform

dataflow-based and instruction-based processing; and

in each compute engine, selectively performing the pro-
cessing in accordance with a virtual channel specifier
and a task specifier of each fabric packet the compute
engine receives.

13. The method of claim 12, wherein:

each compute engine is configured to perform a pre-

defined set of basic operations in response to receiving

a corresponding basic instruction selected from a pre-

defined native instruction set of codes; and further

comprising

processing a training workload comprising

a first set of machine codes selected from the native
instruction set for performing a mapping of at least
a part of a neuron onto the compute engine of the
processor element, the mapping comprising manag-
ing at least one partial-neuron weight,

a second set of machine codes selected from the native
instruction set for performing a forward pass to
propagate activations in a forward logical direction
based at least in part on the at least one partial-
neuron weight, the forward pass initiated responsive
to an input sample,

a third set of machine codes selected from the native
instruction set for performing a delta pass in a
backward logical direction to generate deltas, the
delta pass initiated responsive to completion of the
forward pass,

a fourth set of machine codes selected from the native
instruction set for performing a chain pass to calcu-
late gradients based on the deltas, and

a fifth set of machine codes selected from the native
instruction set for performing a selective update of
the at least one partial-neuron weight in accordance
with a predetermined learning rule and based at least
in part on the deltas; and

wherein each compute engine comprises storage for the at

least one partial-neuron weight.

US 2018/0314941 Al

14. The method of claim 13, wherein the mapping is in
accordance with initializing the fabric to implement a par-
titioning of a neural network into a plurality of layers, the
neuron is a first neuron of a plurality of neurons of the neural
network, the first neuron is comprised in a first layer of the
plurality of layers, and each of the plurality of neurons is
mapped in a distributed manner across a plurality of the
processor elements of the fabric.

15. The method of claim 14, wherein the plurality of
layers operates as a logical fabric pipeline comprising logi-
cal fabric pipeline stages, each logical fabric pipeline stage
comprising completion of all of the passes for each layer, the
completion for each layer taking a time step comprising the
same amount of time.

16. The method of claim 14, wherein as each input sample
of a training set streams through at least a first plurality of
the processor elements across the plurality of layers, the
neuron weights are selectively updated in the first plurality
of the processor elements across the plurality of layers.

17. The method of claim 13, further comprising perform-
ing an iteration of the training workload for each of a
plurality of input samples collectively comprising a training
set.

18. The method of claim 17, further comprising partition-
ing the training set into a plurality of so-called mini-batches
and the predetermined learning rule specifies that the at least
one partial-neuron weight is updated after the completion of
all the passes for each input sample of each of the mini-
batches.

19. The method of claim 18, wherein the forward pass
incorporates weight updates within a first plurality of the
processor elements while the mini-batch learning is ongoing
within the first plurality of the processor elements.

20. The method of claim 17, further comprising, for each
input sample, selectively updating the at least one partial-
neuron weight in accordance with the predetermined learn-
ing rule responsive to completion of the forward pass, the
delta pass, and the chain pass corresponding to the input
sample.

21. The method of claim 20, further comprising, for each
forward pass, selectively using weight information provided
by the most recent selective update of the at least one
partial-neuron weight.

22. The method of claim 21, further comprising selec-
tively performing the delta pass and the chain pass for each
input sample based at least in part on activations that are
recomputed based at least in part on a first partial-neuron
weight.

23. A system comprising:

in each of a fabric of processor elements, means for

selectively communicating fabric packets with others
of the processor elements, each processor element
comprising a fabric router and a compute engine
enabled to perform datatlow-based and instruction-
based processing; and

in each compute engine, means for selectively performing

the processing in accordance with a virtual channel
specifier and a task specifier of each fabric packet the
compute engine receives.

24. The system of claim 23, wherein:

each compute engine is configured to perform a pre-
defined set of basic operations in response to receiving

Nov. 1, 2018

a corresponding basic instruction selected from a pre-
defined native instruction set of codes; and further
comprising

a training workload comprising

a first set of machine codes selected from the native
instruction set for performing a mapping of at least
a part of a neuron onto the compute engine of the
processor element, the mapping comprising manag-
ing at least one partial-neuron weight,

a second set of machine codes selected from the native
instruction set for performing a forward pass to
propagate activations in a forward logical direction
based at least in part on the at least one partial-
neuron weight, the forward pass initiated responsive
to an input sample,

a third set of machine codes selected from the native
instruction set for performing a delta pass in a
backward logical direction to generate deltas, the
delta pass initiated responsive to completion of the
forward pass,

a fourth set of machine codes selected from the native
instruction set for performing a chain pass to calcu-
late gradients based on the deltas, and

a fifth set of machine codes selected from the native
instruction set for performing a selective update of
the at least one partial-neuron weight in accordance
with a predetermined learning rule and based at least
in part on the deltas; and

wherein each compute engine comprises storage for the at

least one partial-neuron weight.

25. The system of claim 24, wherein the mapping is in
accordance with initializing the fabric to implement a par-
titioning of a neural network into a plurality of layers, the
neuron is a first neuron of a plurality of neurons of the neural
network, the first neuron is comprised in a first layer of the
plurality of layers, and each of the plurality of neurons is
mapped in a distributed manner across a plurality of the
processor elements of the fabric.

26. The system of claim 25, wherein the plurality of layers
operates as a logical fabric pipeline comprising logical
fabric pipeline stages, each logical fabric pipeline stage
comprising completion of all of the passes for each layer, the
completion for each layer taking a time step comprising the
same amount of time.

27. The system of claim 25, wherein as each input sample
of a training set streams through at least a first plurality of
the processor elements across the plurality of layers, the
neuron weights are selectively updated in the first plurality
of the processor elements across the plurality of layers.

28. The system of claim 25, wherein as each input sample
of a training set streams through at least a first plurality of
the processor elements across the plurality of layers, the
neuron weights are selectively updated in the first plurality
of the processor elements across the plurality of layers, and
the streaming and updating is ongoing for each time step
over a plurality of time steps.

29. The system of claim 26, further comprising means for
selectively updating the at least one partial-neuron weight
within a first plurality of the processor elements in response
to changes in backward propagating data within the first
plurality of the processor elements for each time step over a
plurality of time steps while forward propagation of activa-
tions are ongoing.

US 2018/0314941 Al

30. The system of claim 26, further comprising means for
selectively updating the at least one partial-neuron weight
each time step over a plurality of time steps.

31. The system of claim 27, 28, 29, or 30, wherein the
selectively updating is in accordance with a continuous
propagation gradient descent process.

32. The system of claim 24, further comprising means for
performing an iteration of the training workload for each of
a plurality of input samples collectively comprising a train-
ing set.

33. The system of claim 32, further means for comprising
partitioning the training set into a plurality of so-called
mini-batches and the predetermined learning rule specifies
that the at least one partial-neuron weight is updated after the
completion of all the passes for each input sample of each of
the mini-batches.

34. The system of claim 33, wherein the predetermined
learning rule is in accordance with a continuous propagation
gradient descent process.

35. The system of claim 33, wherein the forward pass
incorporates weight updates within a first plurality of the
processor elements while the mini-batch learning is ongoing
within the first plurality of the processor elements.

36. The system of claim 24, wherein the storage is
comprised in a memory local to the compute engine.

37. The system of claim 24, wherein each compute engine
further comprises storage for gradient accumulation, for-
ward partial sums, delta partial sums, and forward pass
activations.

38. The system of claim 32, further comprising, for each
input sample, means for selectively updating the at least one
partial-neuron weight in accordance with the predetermined
learning rule responsive to completion of the forward pass,
the delta pass, and the chain pass corresponding to the input
sample.

39. The system of claim 38, wherein the predetermined
learning rule is in accordance with a continuous propagation
gradient descent process.

Nov. 1, 2018

40. The system of claim 38, further comprising means for
selectively using weight information provided by the most
recent selective update of the at least one partial-neuron
weight for each forward pass.

41. The system of claim 40, further comprising means for
initiating a forward pass of a particular iteration of the
training workload independent of whether the selective
update of the at least one partial-neuron weight correspond-
ing to a prior iteration of the training workload has occurred.

42. The system of claim 40, further comprising means for
selectively initiating a forward pass of a particular iteration
of the training workload independent of whether the delta
pass of a prior iteration of the training workload has begun.

43. The system of claim 40, further comprising, in at least
one of the compute engines, means for performing at least
a portion of a forward pass for a subsequent iteration of the
training workload after performing at least a portion of a
forward pass for a prior iteration of the training workload
and before performing a portion of the selective update of
the at least one partial-neuron weight corresponding to the
prior iteration of the training workload.

44. The system of claim 40, further comprising means for
selectively performing the delta pass and the chain pass for
each input sample based at least in part on activations that
are recomputed based at least in part on a first partial-neuron
weight.

45. The system of claim 44, wherein the first partial-
neuron weight is the partial-neuron weight produced by the
most recent selective update.

46. The system of claim 45, wherein the recomputed
activations need not be stored between computations,
thereby decreasing the total memory required for a given
system training configuration.

47. The system of claim 40, further comprising, in each
compute element, means for selectively performing portions
of a delta pass and portions of a chain pass for an input
sample based at least in part on activations that are recom-
puted based at least in part on a first partial-neuron weight.

#* #* #* #* #*

